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Cloud service is being adopted as a utility for large numbers of tenants by renting Virtual Machines (VMs).
But for cloud storage, unpredictable IO characteristics make accurate Service-Level-Objective (SLO) enforce-
ment challenging. As a result, it has been very difficult to support simple-to-use and technology-agnostic SLO
specifying a particular value for a specific metric (e.g., storage bandwidth). This is because the quality of SLO
enforcement depends on performance error and fluctuation that measure the precision of SLO enforcement.
High precision of SLO enforcement is critical for user-oriented performance customization and user expe-
riences. To address this challenge, this article presents V-Cup, a framework for VM-oriented customizable
SLO and its near-precise enforcement. It consists of multiple auto-tuners, each of which exports an interface
for a tenant to customize the desired storage bandwidth for a VM and enable the storage bandwidth of the
VM to converge on the target value with a predictable precision. We design and implement V-Cup in the Xen
hypervisor based on the fair sharing scheduler for VM-level resource management. Our V-Cup prototype
evaluation shows that it achieves satisfying performance guarantees through near-precise SLO enforcement.
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1. INTRODUCTION

In a commercial cloud system (e.g., Amazon EC2 [Amazon EC2 2015], Microsoft Win-
dows Azure [Windows Azure 2015], Google Compute Engine [Google Compute Engine
2015]), enterprise-class computing and storage can be offered as public utilities to
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tenants who pay for cloud services by renting Virtual Machines (VMs) on an as-needed
basis. Many organizations move to the cloud by deploying the enterprise services in
VMs. Hence, VM-oriented performance guarantee may be a vital and crucial require-
ment for the stable and efficient run of user applications. It is desirable for tenants
to be able to express their demands in Service-Level Objectives (SLOs) for the rented
VMs in simple and intuitive specifications that are enforced by the cloud system in a
precise way. However, online commercial cloud services can only provide very limited
guarantees of Quality-of-Service (QoS) in SLOs (e.g., monthly uptime percentage is
higher than 99% [Amazon EC2 SLA 2015]) for tenants. The existing solutions of SLO-
based management suffer from low adoption rates in products, largely because of the
complexity, inaccurate enforcement of SLOs, and poor support for common tenants to
select and specify SLOs.

Compared to network bandwidth, it may be harder to express the storage perfor-
mance requirement as a simple and intuitive specification. This can be attributed to
the highly unpredictable IO characteristics (i.e., request size, the degree of sequential-
ity, read and write ratio, etc.) that are heavily workload dependent and storage specific,
challenging the storage performance guarantees. In contrast, network bandwidth allo-
cation is not heavily influenced by the workload-dependent factors such as message size
that can be uniformly regulated by protocol configurations. Consequently, approaches
such as max-min control [Shue et al. 2012; Gulati et al. 2010, 2012] and proportional
sharing [Gulati et al. 2009; Wachs et al. 2007; Jin et al. 2004; Wu and Brandt 2006;
Povzner et al. 2008] have been proposed for storage resource management, which are
characterized by nonintuitive and technology-dependent SLOs for end users.

Near-Precise SLO Enforcement (N-PSE) in this article refers to the support of a
simple, technology-agnostic and user-oriented SLO that specifies a particular value
for a specific metric (e.g., bandwidth of 30MB/s) with predictably small performance
error and fluctuation. Thus, a user can participate in the formulation of SLO and
be given the quality of performance guarantees quantified by the performance error
within a Statistical Interval, or SI for short, which reflects the timeliness of SLO
enforcement, and a degree of performance fluctuation predicted from profiling the user
application. This enables an arguably more reasonable and enticing pricing model
in which customers pay for their rendered services in terms of the quality of SLO
enforcement instead of the consumed resource capacity, a model that is also evidently
desired by the users of cloud services [Nathuji et al. 2010]. However, the state-of-the-art
approaches based on max-min control [Gulati et al. 2010, 2012; Shue et al. 2012] mostly
focus on the system-wide resource fair sharing among VMs rented by the tenants,
which enforces a performance range between the reservation and the upper limit of
the resources based on the proportional-sharing model. Obviously, it is nonintuitive
and in fact difficult for novice users of cloud services to specify their performance
requirements by customizing the complex and technology-dependent SLOs in terms
of reserved resources, resource upper limit, proportion of sharing, etc. Moreover, the
error between the measured performance and the target performance in SLO is closely
associated with the length of the interval in which the error is measured. For example,
an error of the same average value over 1 second is likely very different from that
over 1 minute. This time sensitivity of performance error, as we will demonstrate, will
have a significant impact on the timeliness of IO control by the I/O scheduler of the
VM hypervisor that is typically driven by the measured performance and affect the
quality of SLO enforcement. Unfortunately, the quality of SO enforcement in terms of
timeliness and its impacts have not been thoroughly explored for VM storage. In this
article, we focus on near-precise SLO enforcement by exploiting the association and
interplay between the timeliness of IO control and the precision of SLO enforcement.

In addition, the IO-resource-management-based approaches, such as mClock [Gulati
et al. 2010], SRP [Gulati et al. 2012], and Pisces [Shue et al. 2012], emphasize 10
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throughput allocation across VMs and thus are difficult to be extended to allocating
storage bandwidth. In the cloud environment, bandwidth is the commonly used metric
for both the network and storage subsystems because it is intuitive for novice users
and directly relevant to 10-bound applications [Liu et al. 2008; Wu et al. 2011; Lu
et al. 2012] running in a cloud. However, SLO enforcement in the metric of storage
bandwidth is arguably more challenging than in the metric of IO throughput because
the former is inherently compounded by two conflicting factors, IO throughput and
request size.

To address the preceding problems, we propose a semantic layer tied to the indi-
vidual VM as a complement to the resource-management-based approaches. Through
the technique of fine-grained performance tuning that limits the request size variabil-
ity and provides better IO control timeliness, the storage bandwidth of a VM can be
converged on the desired value with a predictable precision. We implement the se-
mantic layer as a distributed framework for VM-oriented customizable SLO and its
near-precise enforcement in cloud storage, also called V-Cup for short. It consists of
multiple auto-tuners integrated into the IO scheduler of Xen hypervisor [Barham et al.
2003]. Since each auto-tuner acts like a wrapper for the workloads running on a VM,
V-Cup is transparent to the VM layer and to the resource management. Our results
show that V-Cup achieves satisfying performance guarantees with near-precise SLO
enforcement for the storage bandwidth of VMs in all the evaluation experiments.

The rest of the article is organized as follows. Section 2 discusses the relevant metrics
that are considered necessary for quantifying and measuring the precision of SLO en-
forcement. Section 3 presents the framework design of V-Cup, and the implementation
issues are discussed in Section 4. A detailed performance evaluation on a real system
is presented in Section 5. Section 6 presents the related work of QoS-based storage
management under virtualized data centers. Finally, we conclude the article with an
overview for future work in Section 7.

2. DEFINING AND QUANTIFYING PRECISION OF SLO ENFORCEMENT

Average-based metrics are widely adopted in existing SLO-based approaches [Wachs
et al. 2007; Lumb et al. 2003] for storage management. Even for the state-of-the-art
approaches based on max-min control [Gulati et al. 2010, 2012; Shue et al. 2012;
Thereska et al. 2013], the lower and upper bounds set for performance range can also
be considered as the average-based metrics that bound the performance fluctuation but
are time insensitive in that they fail to reflect and reveal the timeliness consequence
of fluctuation. This time insensitivity of average-based metrics decreases 10 control
timeliness, which in turn adversely affects user experiences.

For example, a video server can use one of the commonly used buffer cache mecha-
nisms, such as interval caching [Dan and Sitaram 1996] and FlashStream [Ryu and
Ramachandran 2013], to reduce the overhead of disk accesses and absorb bursty user
requests by exploiting temporal data-access locality and caching/prefetching the po-
tentially reusable data with higher IO cost. As a result, the video server is able to
increase its effective capacity to tolerate the fluctuation of storage performance to a
certain degree. However, a persistent and prolonged below-SLO storage performance
can cause the buffer cache to be eventually depleted of useful data for the users be-
cause the prefetching speed can no longer keep up with the user demand, rendering
the buffer cache mechanism ineffective. On the other hand, maintaining an above-SLO
storage performance would mean an unnecessary over-provisioning of resources.

As shown in Figure 1, where the maximum allowable Statistical Interval (SI) is
assumed to be 30 seconds, during which the obtained average performance approaches
the target performance specified in SLO (1MB/s) with an acceptable error (e.g., <10%)
for an application, the SLO enforcement of Case 1 can lead to a continuous 50-second
duration of below-SLO storage performance every 100 seconds and cause the user to
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Fig. 1. The illustration of the timeliness for SLO enforcement. Note that Case 1 suffers from 50-second
periods of continuous below-SLO storage performance, in contrast to the 25-second ones for Case 2 with
much less adverse impact to user QoS experience than Case 1, despite identical Max-Min bounds for both
cases.

suffer from poor quality of SLO guarantees. In contrast, the SLO enforcement of Case 2
lowers the below-SLO storage performance to a continuous period of only 25 seconds
per 50 seconds, which can provide a better user experience. This is because a 50-second
continuous below-SLO performance is far more likely to render the employed buffer
cache mechanism ineffective than a 25-second one, as discussed earlier. What is more
important to notice is the fact that this happens despite the fact that the average
bandwidth and max-min bounds obtained during a period longer than 100 seconds
for both cases are identical. Hence, we believe that the average performance error
during a specific SI is the desired metric to evaluate the timeliness of IO control for
SLO enforcement. Since storage bandwidth is commonly measured in terms of KB/s or
MB/s, we choose the minimum interval of measurement to be 1 second.

Definition 2.1. Storage bandwidth error (B): Let b; be the storage bandwidth mea-
sured at the i** second of the interval [t;, t;]. Let T = (t; — ¢; + 1). Let b be the target
value of the storage bandwidth in SLO. The storage bandwidth error in the interval

[t1, t2] is defined as
to
B= (Z(bi —B)/B)/T. o))
i=t;

The interval during which B is derived represents the timeliness of 10 control for
SLO enforcement. It is referred to as the statistical interval (SI). Based on the metric of
B, absolute storage bandwidth error (8) is proposed to measure the quality of guarantee
for the average storage bandwidth. A smaller value of B in a smaller SI is preferred
(e.g., B in the SI of 30 seconds is smaller than 10%).

Definition 2.2. Absolute storage bandwidth error (8): Let B; be the storage bandwidth
error measured at the i*» SI [(i-1)-1, i-A) in the interval [¢;, t2], where A is the length of
SI. Let N = (&5 — #; + 1)/A. The absolute storage bandwidth error in the interval [#, t]

is defined as
N
B = (Z |Bi|>/N. 2)
i=1

In addition, the degree of performance fluctuation reflects the extent of performance
stability. For the storage-intensive applications of tenants (e.g., video server, file server,
and web server, etc.), stable storage bandwidth means stable execution, which is very
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important to the user experience. A smaller value of the storage bandwidth variability
V means a higher stability for the storage bandwidth (e.g., V is smaller than 20%).

Definition 2.3. Storage bandwidth variability (V): Let b; be the storage bandwidth
measured at the i second of the interval [¢1, &]. Let T = (t, — t; + 1). Let b be the average
storage bandwidth during the interval [#;, t;]. The storage bandwidth variability in the
3. THE V-CUP FRAMEWORK

interval [t1, 2] is defined as
to
V= <Z |b; —E|/B>/T. (3)
i=t1
3.1. System Model

V-Cup is designed for a cloud platform consisting of a cloud-computing system sup-
ported by a cloud storage subsystem. As shown in Figure 2, the cloud-computing system
provides the shared infrastructure of utility computing for tenants by encapsulating
the user applications into VMs. And the cloud storage subsystem involves one or more
storage arrays. Each storage array can be partitioned into several logical units (LUNSs)
as the virtual disks (i.e., VM disk) dedicated to VMs. A VM disk is represented by a log-
ical volume on an exclusive LUN. We call the VMs that have the VM disks on the same
array coscheduled VMs. Thus, the VM cluster in the cloud-computing system can share
the storage arrays connected over a Storage Area Network (SAN). As a result, V-Cup
views the underlying storage devices and network infrastructure supporting cosched-
uled VMs as a black box. And the interferences from the inner operations of storage
devices, such as garbage collection in Solid State Drive (SSD) [Kim et al. 2015], RAID
reconstruction [Wu et al. 2009, 2012], etc., are represented by VM-level performance
fluctuation measured by storage bandwidth error and storage bandwidth variability
for V-Cup.

However, a VM is not always pinned to a specific host, namely, for a VM disk, due
to live migration [Mashtizadeh et al. 2011; Bradford et al. 2007]. Moreover, each
rented VM is required to service a specific tenant with a desired SLO. Therefore,
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Fig. 3. The variation of bandwidth, throughput, and latency for the sequential or random read workloads
with IO size ranging from 32KB to 512KB under the control of request-merge limit.

V-Cup is constructed based on multiple auto-tuners integrated into the 10 scheduler
of hypervisor, aiming to support VM-oriented SLO customization and enforcement.

A VM disk is actually a black box, resulting from resource management, from the
viewpoint of the auto-tuner of V-Cup. Each VM can maintain a set of pending requests
at the VM disk (i.e., IO queue). This IO queue represents the IO requests scheduled
by the VM and currently pending at the array. IO queue size can have a great impact
on the throughput and IO latency for a VM. Fortunately, IO queue size of a workload
can be bounded adaptively to the observed latency for a better trade-off between the
desired throughput and latency [Gulati et al. 2009; Jin et al. 2004]. In addition, IO
throughput can also be limited for the target IOPS in SLO by IO throttling [Karlsson
et al. 2005; Lumb et al. 2003; Zhang et al. 2006] or max-min control [Gulati et al. 2010,
2012; Shue et al. 2012]. Compared to IO queue size and 10 throughput, request size is
mostly workload dependent and hard to control on the side of hypervisor 10 scheduler.
More importantly, highly variable request size can directly affect storage performance
(e.g., bandwidth) in an uncontrolled fashion, which can lead to unpredictable SLO
enforcement. Thus, it is hard to guarantee the quality of SLO enforcement. So it is
necessary to evaluate the impacts of request size variability on the storage performance
in different metrics.

3.2. Impacts of Request Size Variability

To explore the effects of bounding the request size variability on storage performance,
we conduct an experiment by running a VM (created by Xen [Barham et al. 2003])
that excessively accesses a RAID 0 disk group over two disks under a read workload
mimicked by FIO [FIO 2015] with different IO characteristics (i.e., IO size issued by
the workload ranges from 32KB to 512KB, sequential and random access patterns,
etc.). We limit the upper bound of the request size issued to the disk array by gradually
increasing the request-merge limit from 4KB in an increment of 4KB every 30 seconds.
In this way, we can observe the storage performance under the upper limit of request
size increased from 4KB and onwards.

Observing the experiment results shown in Figure 3, we are led to the following
conclusions: (1) The storage performance in different metrics (bandwidth, throughput,
and latency) can all be affected by request size variability to various extents for either
sequential or random workloads issuing requests with different sizes. (2) The effect
of request size variability on storage performance becomes more pronounced with the
increasing IO size issued by workloads. (3) Relaxing request-merge limit (i.e., forming
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larger 10s by increasing the limit) beyond a certain point will not further increase
bandwidth significantly as bandwidth tends to plateau with the increasing request-
merge limit, but instead a higher latency or lower throughput will result. Therefore,
we argue that bounding request size by setting request-merge limit appropriately can
potentially support a better trade-off between the desired bandwidth or throughput
and the allowable latency. This motivates us to explore this property in this V-Cup
study, where we will focus on the bandwidth aspect of the property, and in our future
work.

3.3. Bandwidth Control by Adjusting Request-Merge Limit

Merge of requests, which groups small requests with adjacent addresses into a single
larger request, is a core function of locality optimization in the block layer and disk
schedulers. When a disk request is issued by an application, it will be handled by the
file system as follows. The 10 request will be first processed by the file system to allocate
multiple segments (where each segment is a physical memory page) to accommodate it.
These segments, as the basic merge units, are then encapsulated into an intermediate
structure (e.g., bio in the Linux kernel) and merged in the block level before being sent
to the disk scheduler as an incoming request. If the request has a chance to be merged
with a pending request in the disk scheduler, a merge operation will be carried out on
the condition that the size of the merged request does not exceed the request-merge
limit.

Request-merge limit is the upper bound of the request size after request merge. If
the sum of IO sizes of two mergeable requests is larger than the request-merge limit,
the request merge will be disallowed.

Request merge can have a substantial impact on the pattern of request service
time consumed by the disk mechanism that consists of seek time, rotation delay, and
transfer time. This is because request size executed by the disk can be increased by
request merge. Consequently, the data-transfer portion of the request service time
is improved. This means that storage bandwidth can be increased if the IO rate is
kept stable. However, request merge can inherently delay requests in the queue of
the IO scheduler for a chance to form a larger request. So request merge has the
dual effects of reducing IO rate (i.e., request merge reduces the number of IOs per
unit time) and increasing request size. Thus, the impact of request merge on storage
bandwidth can be divided into two broad stages. In the first stage, the request-merge
limit increases gradually from a minimum unit o (e.g., a physical memory page, 4KB)
until the bandwidth reaches its maximum value. Nevertheless, the increasing trend
of bandwidth can be weakened since the IO rate may be reduced by request merges.
Moreover, the increase in request size resulting from relaxing the request-merge limit
is still limited by the upper bound of IO size issued by the application and affected
by the degree of sequentiality. Thus, in the second stage, bandwidth tends to become
stabilized and flattened out as the request-merge limit continues to be relaxed.

We aim to map the request-Merge Limit Range (MLR) into as large a corresponding
Storage Bandwidth Range (SBR) as possible. Thus, a wider adjustable range of band-
width can be offered to tenants of cloud services. So, before attempting to guarantee
the storage bandwidth of a VM, V-Cup will first carry out a profiling test running in
the real environment of VM consolidation to obtain average values of bandwidth in a
fix-length interval (e.g., 1 second) by increasing the request-merge limit by o from o to
MAX _ML' .o (the upper bound for the MLR). If the bandwidth value b obtained under
the request-merge limit L is the highest within the MLR, the bandwidth range of (0, 5]

IMAX_ML is limited by the maximum physical pages per request allowed by hypervisor (e.g., 11 is allowed
for Xen [Barham et al. 2003] by default).
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is accepted as the SBR guarantee for the VM. This leads to MLR being adjusted from
[0, MAX ML - o] to [0, L - o]. However, if the bandwidth in the smallest request-merge
limit is b°, how do we control the bandwidth within the range (0, 5°)? We adopt the
10 throttling technique based on the smallest request-merge limit to achieve the re-
quired control. To guarantee the precision of storage bandwidth SLO enforcement, the
delay time between two consecutive 10 requests (i.e., delay slice) is a key factor in 10
throttling for a VM. Too short a delay slice may be insufficient to dampen the rising
bandwidth while too long a delay slice can lead to a bandwidth lower than the target
value. So the length of the delay slice is given in the throughput target derived from
the bandwidth SLO and the request size obtained under the current request-merge
limit.

If there is no need to guarantee an IO throughput target (i.e., no IO throughput
SLO), V-Cup can enforce a bandwidth SLO by adjusting the request-merge limit when
the bandwidth SLO falls in the SBR. In this way, the IO throttling submodule does not
work. When the bandwidth SLO is below the SBR, V-Cup will set the delay slice length
to be the ratio of a physical page size to the bandwidth SLO to drive 10 throttling. If
there are both throughput SLO and bandwidth SLO, V-Cup will carry out 10 throttling
according to the throughput SLO target and implement request-merge limit control to
achieve the required request size (i.e., the bandwidth SLO divided by the throughput
SLO). In fact, V-Cup can potentially adopt almost all existing IO throughput control
techniques (e.g., mClock [Gulati et al. 2010], Leaky bucket technique [Chambliss et al.
2003], and proportional-integral control [Franklin et al. 1998; Hellerstein et al. 2004])
to both enforce bandwidth SLO and throughput SLO for coscheduled VMs, which is
demonstrated in Section 5.

3.4. Fine-Grained Performance Tuning

Bandwidth control by adjusting the request-merge limit can only provide a set of
scattered and coarse-grained values. For example, a VM can have a bandwidth of
15MB/s with a request-merge limit of 4KB, and 70MB/s with a request-merge limit of
8KB. The request-merge limit can be increased by an increment o of 4KB at a time,
but how to control the bandwidth to reach the target of, say, 30MB/s?

We define the function for bandwidth control as f(x) where x refers to the control
variable (i.e., request-merge limit) and the range of f(x) is the storage bandwidth. Fine-
grained performance tuning refers to adjusting the performance to a desired objective
between f(x1) and f(xg) (x1 > x2) by setting the control variable x at x; or x3 at different
times in a fixed-length interval w. For simplicity, we divide w into n equal-length time
windows, where the length of the time window is called Window Size (WS). And setting
control variable x at x; (or x3) for a time window is referred to as a tuning action.
A smaller WS means better 10 control timeliness (i.e., higher frequency of tuning
actions), which can be beneficial to reducing the error between the weighted arithmetic
mean achieved by fine-grained performance tuning and the target value. Nevertheless,
the number of requests collected during a smaller WS may be too small to derive
sufficiently precise statistics of performance, which is the key indicator for the system
to make a right decision. In other words, fine-grained performance tuning depends
on an appropriate trade-off between the IO control timeliness and the precision of
performance statistics by setting an appropriate WS.

4. IMPLEMENTATION ISSUES

We implement a prototype of V-Cup based on the fair-sharing scheduler (e.g., CFQ
[Axboe 2004] and mClock [Gulati et al. 2010]) across coscheduled VMs. And V-Cup,
integrated into the hypervisor, enforces storage bandwidth SLOs for coscheduled VMs
by establishing multiple auto-tuners each of which is dedicated to an individual VM.
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As shown in Figure 4, an auto-tuner consists mainly of three modules that are respon-
sible for bandwidth control, statistics for N-PSE, and fine-grained performance tuning,
respectively. V-Cup assumes the existence of a fair-sharing scheduler.2 IO capacity in
terms of throughput can be allocated to VMs according to a specific fair-sharing algo-
rithm, based on which the auto-tuner of V-Cup for each VM can carry out a feedback
control to enable the bandwidth to converge on the target value specified in SLO. The
module of statistics for N-PSE can trigger the module of fine-grained performance
tuning only if the precision of SLO enforcement is worse than the desired level (e.g.,
storage bandwidth error (B) is within the range of (—5%, 5%)). In this case, the mod-
ule of bandwidth control can be called to adjust the request-merge limit that controls
the process of request merge or change the length of the delay slice during which 10
dispatching is temporarily blocked (i.e., forced delay of IO dispatching). The precision
of SLO enforcement, that is, how closely storage bandwidth converges on the target
value, can be increased if the auto-tuner can make the right decision when carrying
out bandwidth control and IO control timeliness can be guaranteed. In addition, bet-
ter 10 control timeliness is critical to reducing the fluctuation of bandwidth and more
rapidly coordinating bandwidth to adapt to variable IO characteristics. This relies on
the appropriate configuration for WS.

The overhead of V-Cup stems mainly from collecting IO statistics for each running
VM, which consumes a tiny fraction of the CPU resources (smaller than 1% CPU
utilization in all the experiments reported in Section 5). In addition, V-Cup hardly
requires an additional memory or disk storage resources.

4.1. Bandwidth Control

The bandwidth control module controls the storage bandwidth for the VM by adjusting
the request-merge limit or the length of the delay slice. The variable max_phys_segments
in the Linux kernel is used by V-Cup to delimit the maximum IO size for the requests
in the IO queue at the block layer. When the total 1O size of two mergeable requests
exceeds the maximum IO size, the request merge will be disallowed. IO throttling is
adopted as a submodule in the bandwidth control module, which is used to delay 10
dispatching for a period of time equal in length to the specified delay slice.

4.2, Statistics for N-PSE

The module of IO statistics is used to monitor and obtain the SLO enforcement precision
measures of B (Definition 2.1), 8 (Definition 2.2), and V (Definition 2.3) for different

2V-Cup does not confine the fair-sharing scheduler to the host level, a switch or the storage server.
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Fig. 5. Relationship and interaction among TR, WR, and TA.

Table I. Notations and Their Definitions

Notations Descriptions
bsLo Storage bandwidth SLO
bTARGET The target value used in TA as the objective of adjustment
T ps The statistical interval
V_ps The storage bandwidth variability obtained over 7' ps
B-ps The absolute storage bandwidth error obtained over T ps

BEST_V The threshold of storage bandwidth variability
B_threshold | The threshold of absolute storage bandwidth error
last_V The storage bandwidth variability obtained over the last statistical interval
U The threshold to discern if the newly measured V_ps suffers from sudden IO interference
UN_WIN | The minimum search range size for optimizing the length of time window

strategies (i.e., real-time statistics and periodic statistics) by collecting the information
of 10 dispatching from the IO scheduler. Real-time statistics refers to the statistics in
WS. Periodic statistics means the statistics over a longer period of time (e.g., T_ps, set
at 30 seconds).

4.3. Fine-Grained Performance Tuning

The fine-grained performance tuning involves three complementary and interactive
operations: Tuning Action (TA), Target Revision (TR), and time Window Revision (WR).
TA enables the storage bandwidth of a VM to converge on the target value. However,
the dynamic IO characteristics and the fluctuation in allocated resources can affect
the error between the measured bandwidth and the target value specified in SLO (i.e.,
bsro). So, as shown in Figure 5, V-Cup uses TR to optimize the target value brarger
used in TA as the objective of adjustment. WR is responsible for choosing an appropriate
WS for TA, which can be triggered by a higher V value than a threshold (e.g., 20%)
or the initial configuration. In terms of statistical methods, TR and WR use the period
statistics (i.e., running every T_ps), while TA uses the real-time statistics (i.e., running
every WS). The used notations are explained in Table I.

TA: The storage bandwidth error B_tw is obtained between the average bandwidth
measured in the last time window and brarggr. If B_tw is out of the allowable range (e.g.,
[—5%, 5%]), TA controls the bandwidth by adjusting the request-merge limit during
MLR or the length of delay slice (i.e., delay_slice_len). As discussed in Section 3.3,
bandwidth can be basically increased with the request-merge limit within MLR. So
TA can increase the request-merge limit by a minimum unit at a time for a higher
bandwidth, and vice versa. Since TA runs every WS (often more than 10HZ), TA can
quickly find two consecutive request-merge limits suitable for fine-grained performance
tuning for bragrcer. Thus, even though the bandwidth as a function of the request-merge
limit is not strictly monotonous, TA can still work well albeit at the cost of consuming
some time windows in search of the proper request-merge limit. If the request-merge
limit reaches the minimum request-merge limit and B_tw is still greater than the upper
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ALGORITHM 1: Time Window Revision (WR) Algorithm

Input: Storage bandwidth variability over T"_ps (V_ps), the absolute storage bandwidth error
over T ps (B_ps), and the SLO target of storage bandwidth (bg0).

Output: The suboptimal WS (ws).

ws_max = 1024 ms; ws_min = 32 ms; ws = ws_max;

repeat
if (V_ps — U < last V) and (B_ps < B_threshold);
then
ws_max = ws,;
else .
ws_min = ws;
end

ws = (ws_min + ws_max) / 2;
until (ws_max — ws_min < UN_WIN) or (V_ps < BEST _V)and (B_ps < B_threshold));

bound of allowable range, TA will set delay_slice_len to be the ratio of a physical
page size to the bandwidth SLO to drive 10 throttling. Nevertheless, TA can fail under
the condition that B_tw is lower than the lower bound of the allowable range and
request-merge limit reaches the maximum request-merge limit. In this case, the 10
capacity allocated to the VM is inadequate for the target bandwidth and IO throughput
reallocation [Gulati et al. 2010] or VM migration [Mashtizadeh et al. 2011] may be
triggered.

WR: As shown in the WR algorithm, it is an O(log ) algorithm. We first analyze the
time complexity of the WR algorithm as follows. Suppose the initial size of the search
space of WS is n for the first iteration, the value will be n/2 for the second iteration.
By that reasoning, the search space size will be n/4, n/8, ..., n/(2*) for the subsequent
iterations. And % is the maximum number of iterations. So the time complexity of the
WR algorithm can be represented by O(logn). As a heuristic optimizer, the goal of
WR is to search for a suboptimal WS (i.e., ws) for TA to guarantee storage bandwidth
variability over the SI of T_ps (i.e., V_ps) that is smaller than the threshold of BEST_V.
Moreover, the absolute storage bandwidth error 8_ps in T_ps should be kept lower than
a threshold (i.e., B_threshold). In this case, WR returns ws as a suboptimal WS for TA.
Otherwise, WR will set the upper bound of WS (i.e., ws_max) as ws only if V_ps - U
is smaller than or equal to last_V (i.e., V_ps measured in the last T_ps), or else the
lower bound of the time window is changed to ws. U is a parameter for reducing the
impact of sudden IO interference on V_ps, which, if unhindered, can prematurely stop
the exploration of WR for a more optimizing WS. And the average values of ws_max
and ws_min will be set as the input parameters of WR for the next iteration that will
be triggered after an interval of T_ps. WR will continue to achieve its goal until the
difference between ws_max and ws_min becomes smaller than UN_WIN, at which point
WR will exit.

TR: It aims to keep the storage bandwidth error B_ps, which is obtained between the
target bsro specified in SLO and the measured bandwidth b_ps averaged over T_ps,
within an allowable range (e.g., [-5%, 5%]) by adjusting bparger for the TA algorithm.
The plus or minus sign of B_ps shows the change direction of the adjustment variable
denoted by adjust_factor (i.e., decreasing or increasing brargrer by adjust_factor per-
cent of bgro). To adjust brarger in time, TR linearly increases adjust_factor for the
case of B_ps being larger than a threshold (e.g, 10%) by multiplying the number of con-
secutive adjustments in the same change direction. For the first run, adjust_factor
uses B_ps/2 as the initial correction. In addition, adjust_factor is increased or de-
creased by the amount of 2% at a time.
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4.4. VM-Oriented End-To-End Control in V-Cup

The auto-tuner of V-Cup is able to carry out VM-oriented end-to-end storage bandwidth
control with the request-merge limit submodule and IO throttling submodule for each
VM. Thus, for an auto-tuner, the inputs are the prespecified storage bandwidth SLO
for and the IO statistics obtained from a VM, while outputs are the request-merge
limit or delay slice length for the VM, resulting in a closed-loop feedback control.
As a result, each auto-tuner can implement single-purpose optimization for its own
control target without additional impacts from other auto-tuners, which obviously
helps achieve stable and accurate control. When live migration happens for a VM, the
auto-tuner previously of the VM will be revoked. And the V-Cup on the destination
host where the VM migrates to will reinstall an auto-tuner for the VM. In doing so,
the VM-oriented end-to-end control mechanism of V-Cup is able to work well in spite
of VM live migration. If storage migration [Mashtizadeh et al. 2011] takes place for a
VM, only the Storage Bandwidth Range (SBR) profiling test (elaborated in Section 3.3)
for the VM will be redone. However, it is noted that VM storage migration is commonly
time consuming and occurs relatively rarely. Thus, the cost of redoing the SBR profiling
test triggered by VM storage migration is almost negligible.

5. PERFORMANCE EVALUATION

In this section, we present the results of a detailed evaluation of V-Cup in a real
cloud-computing system established by Xen 3.4.2 [Barham et al. 2003] and based on a
large-scale disk array. To provide IO resources fairly for coscheduled VMs, CFQ [Axboe
2004], the default 10 scheduler for mainstream Linux versions, is adopted as the Fair-
Queuing scheduler (FQ). In addition, the state-of-the-art approach mClock [Gulati et al.
2010] is used as another hypervisor IO scheduler across VMs to verify V-Cup’s ability to
enhance existing state-of-the-art approaches by being orthogonal and complementary
to them. The cloud-computing server is a PowerLeader PR2760T server with two Intel
Xeon E5620 quad-core processors, 12GB of RAM, and 10Gbit/s NIC connected to a disk
array over an iSCSI SAN. Unless otherwise specified, the VM disks are hosted on a
16-disk (7200RPM, 250GB) RAID 0 disk group on the array.

The two baseline systems are cloud-computing systems with fair allocation of storage
resources (e.g., IO throughput) for VMs by FQ and mClock [Gulati et al. 2010], respec-
tively, referred to as FQ and mClock. Our V-Cup prototype systems based on FQ and
mClock, referred to simply as V-Cup + FQ and V-Cup + mClock, provide VM-oriented
customizable SLO with its near-precise enforcement for the storage bandwidth of VMs.
This allows us to comprehensively evaluate V-Cup’s effectiveness by comparing the two
cases in a cloud-computing system with and without V-Cup. We have the following two
objectives for the experimental evaluation of V-Cup. The first is to prove the effective-
ness of V-Cup in providing near-precise SLO enforcement for the storage bandwidth
of VMs by observing the measures of absolute storage bandwidth error (8) in a SI of
30 seconds and storage bandwidth variability (V). The second objective is to verify the
VM-oriented customizability of SLO supported by V-Cup. All the results of our experi-
ments are collected from the IOs issued from the VMs that include the IOs requested
by the benchmarks, the software supporting the benchmarks (e.g., MongoDB and Java
running environment), and the guest OS.

5.1. Control-Specific Challenges

The TR and WR mechanisms are designed to address two control-specific challenges
facing the TA, namely, the phase effect and the performance drift, to be elaborated
later. Briefly, the former refers to the fact that the 8 and V measures exhibit three
distinct phases as the WS decreases, while the latter signifies the notable changes in
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Fig. 6. Absolute storage bandwidth error § (figure on the left) and storage bandwidth variability V (figure
on the right) as a function of the window size (WS) under the fine-grained performance tuning. Recall from
Section 2 that a smaller value of 8 in a smaller SI is preferred, while a smaller value of V means a higher
stability for the storage bandwidth.

B as IO characteristics and thus resources allocated to a VM change dynamically. To
better observe and understand the role in these challenges played by 10 characteristics
(e.g., sequential or random, read or write, fixed or variable 10 size), we use FIO [FIO
2015] in the following experiments to simulate seven different workloads by forking 10
threads in a VM to seek their 100G files on the VM disk with asynchronous IO engine.
These workloads are Sequential Read (SR), Sequential Write (SW), Random Read (RR),
Random Write (RW), Sequential Read with Variable request size (SRvar), Sequential
Write with Variable request size (SWvar), and Random Read with Variable request
size (RRvar). For the workloads with variability (i.e., with a “var” in their labels), 10
size can range from 4KB to 128KB; otherwise, the 10 size is fixed at 128KB. The 10
depth in FIO is set at 20 for all seven workloads.

5.1.1. Phase Effect and WR Enforcement. Based on the analysis in Section 3.4, the IO
control timeliness depends on the configuration of WS that determines the frequency
of tuning actions. In fact, if we continuously increase this frequency, starting from 1HZ
(i.e., a WS of 1 second), there are three successive phases that exhibit distinctive char-
acteristics on absolute storage bandwidth error 8 and storage bandwidth variability
V. Moreover, the phenomenon, which we refer to as phase effect, exists for workloads
of almost all the IO characteristics (random or sequential, read or write). To verify the
phase effect, we deploy four workloads, SR, SW, RR, and RW, in a VM, respectively, to
access a two-disk RAID zero disk group under different WSs and plot the values of
and V over 5 minutes in Figure 6.

As shown in Figure 6, the patterns of change in storage bandwidth can be divided
into three broad phases with the increase in the frequency of the tuning actions. For
the first, as a characteristic of larger WSs, the absolute storage bandwidth error 8 can
be maintained at a lower level but in a larger SI. In addition, a larger WS often means a
larger storage bandwidth variability value V that indicates a more volatile fluctuation
for the storage bandwidth measure. If WS is decreased continuously, the second phase
emerges with the characteristics of a smaller 8 in a smaller SI and a smaller V. That
is, near-precise SLO enforcement can be achieved in this phase. But, if we continue to
reduce WS, the third phase will start to appear, which is characterized by a trend of
increasing 8 and V values. This is because the number of I10s in the time window is
too small to provide adequately precise average bandwidth. So, there clearly exists an
optimal WS for a given workload. In theory, we can find the optimal WS by exhaustive
search in the WS domain from 1ms to 1000ms. This, of course, is time consuming and
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Fig. 7. The process of time window revision for the workloads of SRvar (figure on the left), RRvar (figure
in the middle), and SWvar (figure on the right), showing the relationship between the measured bandwidth
and the window size (WS), as well as the impact of the latter on the precision of SLO enforcement.

inefficient. To address the problem, the time WR algorithm is designed to optimize WS
in an efficient manner.

We use the SRvar, RRvar, and SWvar workloads to verify the effectiveness of the
WR algorithm for the workloads. In this and the following experiments, we set WS
at 1,024 as the initial value of WS, while ws_min and ws_max are set at 32 and 1,024,
respectively. BEST_V and B_threshold are set at 5% and 10%, respectively, as the goals
for WR. The desired bandwidths bgy,¢ for SRvar, RRvar, and SWvar are 40MB/s, SMB/s,
and 15MB/s, respectively. We set T_ps at 10 seconds and U at 3%. As shown in Figure 7,
for SRvar, the storage bandwidth variability V value can be seen to decrease for the
most part except for a minor increase of 1.92% in the sixth iteration that is smaller
than U, while the absolute storage bandwidth error g is kept below B_threshold except
for the first iteration. When the WS decreases to 63ms, the value of V falls to 4.62%,
slightly below BEST_V (5%), and then the WR algorithm returns the optimized WS of
63ms for TA. For RRvar, when WS falls to 63ms (during the period between the 50
second and the 60%" second), the storage bandwidth variability V has actually increased
from 9.45% to 15.13% in the sixth iteration. This implies an overshoot for WR, forcing
the algorithm to continue its search by backtracking slightly (with a WS larger than
63ms) until the difference between ws_min and ws_max falls below UN_WIN (set at 32).
In this case, WR finds a suboptimal WS of 78ms for the tuning action, approximately
and nearly achieving the goal. For SWvar, the absolute storage bandwidth error 8 can
be observed to rise quickly from 7% to 14.91% in the fourth iteration, which implies
an overshoot in 8 and forces the algorithm to continue its search by backtracking for a
larger WS. As a result, the WS of 171ms is decided for SWvar. The number of iterations
for SRvar, RRvar, and SWvar are all 7. This implies that 7 * T_ps is required for WR
to finish the process of time window revision. Larger T_ps means a higher precision
in SLO enforcement but a longer time of running WR. So, we can reduce the running
time of WR by shrinking the search scope of WS (e.g., narrowing from (32, 1,024) to
(32, 256)). Moreover, higher U can be used to alleviate the impact of search inaccuracy
of WR due to smaller T_ps.

5.1.2. Performance Drift and TR Enforcement. Dynamic 10 characteristics and the fluc-
tuation in allocated resources to a VM can affect the error between the measured
bandwidth and the target value specified in SLO, a phenomenon we refer to as per-
formance drift. The TR mechanism is proposed to address this problem by adjusting
brarcer timely based on the change in the storage bandwidth error B_ps for the TA
algorithm. To assess the effectiveness of TR in alleviating performance drift, we deploy
the SRvar, SWvar, and RRvar workloads in three coscheduled VMs, respectively, where
the target bandwidths are 20MB/s, 15MB/s, and 3MB/s respectively. As shown in Fig-
ure 8, adjust_factor, which determines the amount of correction applied to bragrcer,
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Fig. 9. A comparison between FQ and V-Cup+FQ in bandwidth, latency, and IO queue size of the four VMs
deployed with YCSB that are concurrently running for 55 minutes. VM1 has 5,300,000 objects of size 10KB
each and each of VM2-VM4 has 10,000 objects of size 160KB each.

can be coordinated adapting to the change in the storage bandwidth error B. As a
result, for the concurrently running workloads with distinct IO characteristics, TR can
effectively control the storage bandwidth error to be within the range [—5%, 5%].

5.2. Workload of YCSB

We use Yahoo Cloud Serving Benchmark (YCSB) [Cooper et al. 2010] to generate
a Zipfian distributed key-value request workload that includes 50% reads and 50%
updates. Specifically, each VM runs an instance of YCSB based on the MongoDB
[MongoDB 2015] to access a dataset stored on its VM disk. To evaluate the effec-
tiveness of near-precise SLO enforcement of V-Cup for the VMs with heterogeneous
datasets (i.e., different numbers of objects and different object sizes), we established
two types of datasets for four coscheduled VMs. VM1 has a dataset of 5,300,000 objects
of size 10KB each, while there are 100,000 objects of size 160KB each on the VM disks
of the other three VMs (i.e., VM2-VM4). The layout of the dataset for VM1 is different
from that of the other three VMs.

To compare with FQ under the same fairness strategy, we customize the same target
bandwidth in SLO for each VM (i.e., 5MB/s). As shown in Figure 9, the bandwidth

ACM Transactions on Storage, Vol. 13, No. 1, Article 6, Publication date: February 2017.



6:16 N. Li et al.

Table Il. The Measured Average Bandwidth and g in V-Cup+FQ and a Comparison
in V Value between FQ and V-Cup+FQ for the Four VMs Over 55 Minutes

Bandwidth (MB/s) V (%)
VMs Target Measured B (%) FQ V-Cup+FQ
VM1 5 5.02 2.97 13.88 11.26
VM2 5 5.08 5.32 31.98 15.77
VM3 5 5.08 4.36 31.60 15.23
VM4 5 5.04 5.23 32.24 16.43
Table Ill. Parameters for Filebench Workloads

Services Files Threads File size 10 size

Web Server 50,000 100 16KB 512KB

Mail Server 50,000 16 8-16KB 16KB

File Server 50,000 50 128KB 16KB-1MB

Video Server — 48 1GB 256KB-1MB

fluctuation for VM2-VM4 in FQ is much wider than that in V-Cup. More importantly,
for FQ, the bandwidth of VM1 is smaller than that of any other VM, while its latency is
larger than that of any other VM. In addition, a widening gap in latency between VM1
and any other VM is observed in FQ. This is because the IO queue size of VM1 with
outstanding requests at the disk array increases steadily with time. Obviously, unfair
and disadvantageous 10 competition for VM1, due to its different data layout from the
other VMs, makes its IO performance unstable, indicating that FQ cannot provide a
fair performance for VMs if their data layout is different.

In contrast, as shown in Figure 9, V-Cup+FQ is able to keep the bandwidth for VM1—
VM4 relatively stable and at or near their target bandwidth of 5SMB/s. More specifically,
as listed in Table II, the g values for VM1-VM4 in V-Cup+FQ are all smaller than 6%,
while the V values for VM1-VM4 in V-Cup+FQ are much smaller than those in FQ.
This indicates that V-Cup+FQ can provide a near-precise SLO enforcement for the
storage bandwidth of VM1-VM4 despite their different data layout. In addition, the
latency measures for VM1-VM4 are observed to converge to a value smaller than
the latency values in FQ and remain relatively stable. This is because V-Cup+FQ can
judiciously maintain a proper IO queue size and request size that are just enough for
preserving the target bandwidth. As shown in Figure 9, the average 10 queue size
for VM2-VM4 in V-Cup+FQ is smaller than that in FQ. However, the specific data-
layout difference between VM1 and VM2-VM4 means that the I10s issued by VM1 are
competing unfairly and disadvantageously with the IOs issued from the other VMs.
But with the adjustment by V-Cup, the IO queue size of VM1, with its outstanding
requests at the disk array, is increased to be larger than those of the other VMs, which
enables the throughput of VM1 to be increased. This effectively compensates for VM 1’s
disadvantage in the IO contention with the other VMs.

5.3. VM-Oriented Customizability of SLO

V-Cup provides customizable SLO with its near-precise enforcement for common ten-
ants in an intuitive way, that is, simply informing or expressing the desired storage
bandwidth in SLO. Based on the design of V-Cup, the tenant can also customize when
and how much the storage bandwidth of VMs may be changed at runtime. The following
experiments are designed and conducted to demonstrate this customizability of V-Cup
and its feasibility and effectiveness.

First, we deploy different types of servers, including web server, mail server, file
server, and video server simulated by Filebench [Mcdougall 2015] (the specific param-
eters of each workload are listed in Table III), each on a different VM, to test how they
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Fig. 10. The storage bandwidth, absolute storage bandwidth error (8), and storage bandwidth variability
(V) as a function of the controlled linear increase of SLO for the storage bandwidth of different servers.

each perform in V-Cup. Specifically, we let the target storage bandwidth of a VM in
the SLO rise in a controlled fashion, starting from 5MB/s, by an increments of 5MB/s
every 5 minutes and observe the measures of the SLO enforcement precision (i.e., 8
and V) for each of these 5-minute periods. As shown in Figure 10, for the web server,
when the SLO is increased from 5MB/s to 45MB/s, the bandwidth averaged over each
5-minute period, or average bandwidth for simplicity, can be adjusted from 5.35MB/s to
41.04MB/s. For the mail server, the average bandwidth can be increased continuously
from 4.86MB/s to 22.3MB/s as SLO increases from 5MB/s to 25MB/s. And the average
bandwidths for the file server and the video server can also be seen to increase from
4.62MB/s and 5.36MB/s to 45.23MB/s and 48.32MB/s, respectively, as SLO increases
from 5MB/s to 50MB/s. It is also observed that the absolute storage bandwidth error ()
over each 5-minute period can be maintained below 10% for almost all the cases except
for the case of the highest SLO (i.e., 25MB/s) for the mail server. In this exception
case, 8 is abruptly increased from 3.23% to 10.91% when SLO is changed from 20MB/s
to 25MB/s. This is because the measured maximum bandwidth for the mail server is
about 22MB/s, which should be the upper bound of SLO enforcement. So, in a real cloud
environment, V-Cup should feedback a bandwidth range to the tenant after carrying
out a test running, which is discussed in Section 3.3. In addition, storage bandwidth
variability (V) can be maintained below 30% for all the cases, where for 91.2% of the
cases V can be kept below 20%.

Second, to verify the near-precise SLO enforcement supported by V-Cup in server
consolidation, we deploy the web server, mail server, file server, and video server sim-
ulated by Filebench [Mcdougall 2015] in four coscheduled VMs (VM1, VM2, VM3, and
VM4), respectively. The SLOs for these four VMs are set at 40MB/s, 20MB/s, 10MB/s,
and 20MB/s, respectively. And then, we run them concurrently in V-Cup and FQ, re-
spectively, for 20 minutes. As listed in Table IV, the storage bandwidth stability V'
value for the four VMs in V-Cup is smaller than that in FQ. In addition, the absolute
storage bandwidth error B8 value for the four VMs in V-Cup is also maintained at a
lower level, with the maximum value being 8% for VM4.
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Table IV. The Average Bandwidth and 8 for Four Concurrent Workloads
(Web Server, Mail Server, File Server, Video Server) in V-Cup and a
Comparison in V between FQ and V-Cup of the Four VMs over 20 Minutes

V-Cup Bandwidth (MB/s) V (%)
VMs Target Measured B (%) FQ V-Cup
VM1 40 40.6 2.6 10.0 6.02
VM2 20 21.02 5.11 6.28 3.55
VM3 10 9.96 7.05 52.19 22.45
VM4 20 18.74 8.0 103.89 29.74
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Fig. 11. A comparison between FQ and V-Cup in total bandwidth, latency, and IO queue size averaged over
10 minutes when the number of coscheduled VMs (running SR) increases from four to seven.

5.4. Bandwidth Guarantee with Fixed Storage Capacity

In this section, our evaluation examines a key question: What is the maximum storage
bandwidth that can be provided by V-Cup with a fixed storage capacity, which refers
to the maximum capacity supported by the given devices (e.g., a given array of disks),
shared by different numbers of VMs?

We experimented with the workloads of SR (elaborated in Section 5.1) in VMs to
simulate streaming media services sharing a fixed storage capacity. To compare with
FQ under the same fairness strategy, we customize the same target bandwidth for
each VM. To reach the maximum total bandwidth provided by V-Cup, we increase
the target continuously until the total bandwidth cannot be further increased. In this
scenario, the sum of the target bandwidths for all the VMs can be larger than the total
bandwidth averaged over a longer period of time (e.g., 10 minutes). If this happens, we
consider the storage capacity inadequate for meeting the objectives of the near-precise
SLO enforcement.

We set 60MB/s, 55MB/s, 50MB/s, and 45MB/s as the target bandwidths per VM
for the scenarios of four VMs, five VMs, six VMs, and seven VMs, respectively, when
running the SR workload on VMs. It is observed from Figure 11 that the total band-
width for FQ is slightly smaller than that for V-Cup. More specifically, the maximum
total bandwidths provided by V-Cup are 230.78MB/s, 265.25MB/s, 287.71MB/s, and
303.49MBY/s, in contrast to 221.64MB/s, 246.24MB/s, 283.81MB/s, and 299.48MB/s by
FQ, as the number of coscheduled VMs increases from four to seven, respectively. As
listed in Tables V and VI, for V-Cup, the absolute storage bandwidth error (8) over
10 minutes can be maintained at a low level (smaller than 6%), while the storage
bandwidth variability (V) value for each VM is kept below 10.03%.

Another significant advantage of V-Cup over FQ is its smaller IO latency than FQ for
VMs. As shown in Figure 11, the average latency during the 10 minutes for each VM in
V-Cup is smaller than that in FQ when the number of coscheduled VMs increased from
four to seven. This is because V-Cup can judiciously maintain a proper IO queue size
and request size that are just enough for preserving the target bandwidth. As shown
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Table V. The g Values Over 10 Minutes for VMs in V-Cup when the Number of Coscheduled VMs
(Running SR) Increases from Four to Seven

Absolute storage bandwidth error 8 (%)
VMs Target (MB/s) vm1l vm2 vm3 vm4 vm5 vm6 vm7
4 60 3.16 3.73 5.17 3.38 — — —
5 55 2.69 3.37 4.25 4.04 3.77 — —
6 50 3.84 4.22 4.32 4.19 4.02 4 —
7 45 3.96 2.99 3.98 3.29 3.76 3.69 4.01

Table VI. The V Values Over 10 Minutes for VMs in V-Cup when the Number of Coscheduled VMs
(Running SR) Increases from Four to Seven

Storage bandwidth variability V (%)

VMs Target (MB/s) vm1l vm2 vm3 vm4 vm5 vm6 vm7
4 60 9.58 9.51 8.81 9.75 — — —
5 55 9.1 9.54 9.13 9.53 10.03 — —
6 50 8.93 8.68 8.09 8.53 8.28 8.59 —
7 45 8.05 8.48 8.03 7.97 7.83 8.3 7.95
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Fig. 12. The throughput, request size, and bandwidth under the max-min control of mClock.

in Figure 11, the average 10 queue size and latency during the 10 minutes for each VM
in V-Cup are smaller than those in FQ when the number of coscheduled VMs increased
from four to seven.

5.5. V-Cup and mClock

We conduct this experiment to verify V-Cup’s ability to enhance max-min control of
resource management for coscheduled VMs. Specifically, we adopt mClock [Gulati et al.
2010] as the IO scheduler based on which V-Cup works as a request size control layer for
each VM, exporting bandwidth customization interface for users. Since it is hard for the
user to determine the weights of VMs sharing the resources subject to the constraint
that each VM receives at least its reservation, we assume that each coscheduled VM
has the same weight in the experiment of the mClock-based V-Cup (V-Cup+mClock).
Moreover, we represent the reservation and limit for each VM in the mClock setting
as (reservation, limit), which means that the VM should receive a throughput whose
value lies in the range (reservation, limit).

As shown in Figure 12, with different mClock settings of (100, 200), (100, 250),
and (100, 100) for VM1, respectively, the max-min throughput of VM1 can be well
coordinated according to the corresponding settings. However, the variation in VM1’s
bandwidth is unpredictable and uncontrollable under mClock because the variability
of request size affects the fluctuation of bandwidth even when the reservation and
limit are set at the same value of 100 IOPS. Hence, we use V-Cup based on the resource
management of mClock for coscheduled VMs to provide near-precise SLO enforcement
for VM storage bandwidth. And we only assume that mClock provides a coarse-grained
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Fig. 13. The variation of bandwidth, throughput, and request size in the one-VM, two-VM, and three-VM
configurations deployed with YCSB that are concurrently running for 10 minutes under the control of V-
Cup+mClock. VM1 has 5,300,000 objects of size 10KB each and each of VM2-VM3 has 10,000 objects of size
160KB each.

Table VII. The Measured g and V for the One-VM, Two-VM, and Three-VM
Configurations under the Control of V-Cup+mClock Averaged Over 10 Minutes

B (%) V (%)
VMs VM1 VM2 VM3 VM1 VM2 VM3
1*VM 3.06 — — 9.43 — —
2¥VM 2.69 1.52 — 7.29 5.54 —
3*VM 4.14 1.45 1.12 9.26 6.45 7.00

throughput allocation across VMs because the strict reservation-and-limit settings may
perplex novice users. Figure 13 shows the results with the mClock settings of (200,
250), (150, 250), and (100, 250) combined with the V-Cup settings of 5MB/s, 6MB/s, and
TMB/s for the one-VM, two-VM, and three-VM concurrently running configurations
each for 10 minutes, respectively. It can be observed that V-Cup can converge the
bandwidth of each VM on the target value in all settings by coordinating the request
size and throughput in a fine-grained fashion. We can further verify the results of
near-precise SLO enforcement in Table VII that shows very small values of 8 (i.e., all
the B values are smaller than 5%) and V (i.e., all the V' values are smaller than 10%)
can be achieved by V-Cup+mClock. It is noted that V-Cup is compatible with and well
complements mClock in that the specific reservation-and-limit setting will not affect
the precision of SLO enforcement of V-Cup only if the desired throughput falls between
the reservation and the limit set in mClock.

5.6. Request-Merge Limit and 10 Throttling

Storage bandwidth is determined by two factors: I0 throughput and request size.
Thus, both stable IO throughput and stable request size are important to bandwidth
SLO enforcement. Thus, it makes sense to investigate the mutual impact of request-
merge limit adjustment and IO throttling under the V-Cup control. In this way, we can
effectively verify the feasibility and robustness of V-Cup on storage bandwidth SLO
enforcement by the cooperation between request-merge limit control and 10 throttling.
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Fig. 14. The variation of throughput and request size for three concurrently running VMs deployed with
web server, file server, and video server, respectively, under the cooperation between the request-merge limit
control and IO throttling.

To this end, we implement a Proportional-Integral (PI) model, adopted from the clas-
sical control theory [Franklin et al. 1998; Hellerstein et al. 2004], in the IO throttling
submodule of the V-Cup auto-tuner to control the IO dispatching for each individual
VM. In doing so, we can achieve almost zero control error (i.e., the difference be-
tween the control target and the actual measured value) of IO throughput in theory
[Hellerstein et al. 2004]. And then, we conduct an experiment by running three VMs
that concurrently access a 16-disk RAID-0 disk group. We deploy a web server, a file
server, and a video server simulated by Filebench [Mcdougall 2015] in these three
VMs, respectively. The storage bandwidth SLOs for these VMs are 10MB/s, 15MB/s,
and 30MBY/s, respectively, while their IO throughput targets are 466 IOPS, 550 IOPS
and 211 IOPS, respectively. We choose Deficient Round Robin (DRR) [Shreedhar and
Varghese 1987] algorithm as the baseline, which is adopted by the state of the art
Pisces [Shue et al. 2012] to guarantee the accuracy of SLO enforcement. As shown in
Figure 14, the interference between the request-merge limit control and IO throttling is
almost negligible as evidenced by the small variation of throughput and request size for
these VMs. This is largely because V-Cup will allocate a request-merge limit submodule
and an IO throttling submodule for each running VM so as to minimize the mutual in-
terferences among their feedback control loops. Thus, each submodule can implement
single-purpose optimization for its own control target without additional impacts from
other submodules, which obviously helps achieve stable and accurate control. Specif-
ically, in contrast to DRR, V-Cup can effectively achieve more stable IO throughput
for all three VMs with the averages of 466.75 IOPS, 550.77 IOPS, and 211.81 IOPS,
very close to their targets. Simultaneously, V-Cup also outperforms DRR in minimizing
request size variability. As a result, the values of absolute storage bandwidth error for
these VMs under the V-Cup control are 0.30%, 0.58%, and 0.62%, while those obtained
under DRR are 1.12%, 1.24%, and 0.70%, which means V-Cup can achieve more accu-
rate storage bandwidth SLO enforcement for all the concurrently running VMs based
on a satisfactory timeliness of IO control.

6. RELATED WORKS
6.1. Virtualization for Data Centers

Modern data centers widely adopt full or paravirtualization (Barham et al. [2003],
VMware Infrastructure [2016], and Kivity et al. [2007]) or OS-level virtualization
(LXC [2016] and Soltesz et al. [2007]) to support multiple applications running on
their individual VMs or containers, respectively, deployed on the same host. Full or
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paravirtualization provides a guest OS (and thus an isolated 10 stack) for each VM,
while OS-level virtualization permits the consolidated containers to adopt a shared
10 stack, however, resulting in severe 10 interference [Kang et al. 2014].

Many mainstream virtualization techniques [Sugerman et al. 2001; Fraser et al.
2004; Russell 2008] support VM-level device emulation, which can virtualize physical
storage devices shared by coscheduled VMs or containers as individual virtual disks.
And each virtual disk can be flexibly attached to a specific VM or container with near-
native performance [Mansley et al. 2007]. However, the performance isolation among
VMs or containers poses a great challenge. The recent research of MultiLanes [Kang
et al. 2014] introduces an isolated IO stack for each container above the container-based
OS layer for improved performance isolation.

In contrast, our V-Cup system is implemented in the disk IO scheduler at the block
layer of the Linux OS, which is not tied to a specific type of virtualization implementa-
tion (e.g., Xen or KVM). Furthermore, V-Cup is orthogonal and complementary to the
preceding virtualization solutions.

6.2. QoS-Based Storage Sharing

The existing approaches to QoS-Based storage sharing can be broadly divided into
three categories according to the 10 control technique adopted. The first is the class
of approaches that adopt IO throttling techniques, such as time-stamp-based IO rate
control [Bennett and Zhang 1996; Golestani 1994; Goyal et al. 1997; Suri et al. 1997],
leaky bucket technique [Chambliss et al. 2003], DRR [Shreedhar and Varghese 1987],
and control theoretic methods [Franklin et al. 1998; Hellerstein et al. 2004], etc.,
to guarantee throughput or latency QoS for consolidated workloads, such as mClock
[Gulati et al. 2010], Pisces [Shue et al. 2012], Aqua [Wu and Brandt 2006], SARC
[Zhang et al. 2006], etc. mClock, based on time-stamp-based IO rate control, is able to
control the throughput variability of VMs by appropriately adding the limits, shares,
and reservations to the hypervisor’s fair scheduler. Fahrrad [Povzner et al. 2008] can
translate throughput target into disk time utilization that guides IO throttling by
time-stamp-based IO rate control. Pisces enables the sharing of key-value storage with
max-min fairness on a per-tenant basis, which adopts DRR [Shreedhar and Varghese
1987] to reduce the performance deviation from the SLO target. Triage [Karlsson
et al. 2005] can provide throughput and latency differentiation for each workload by
adaptive controller with integral control, which is a type of control model emerged from
the classic control theory [Franklin et al. 1998; Hellerstein et al. 2004]. In addition,
many existing approaches, such as Aqua [Wu and Brandt 2006] and SARC [Zhang
et al. 2006], adopt many variants of the leaky bucket model to guide IO throttling for
coscheduled IO workloads so as to meet the throughput target of each workload.

The second is the class of solutions that use 10 queue depth control to improve
IO isolation or fair share across clients at the cost of IO concurrency, such as SRP
[Gulati et al. 2012], IOFlow [Thereska et al. 2013], PARDA [Gulati et al. 2009], SFQ(D)
[Jin et al. 2004], etc. SRP [Gulati et al. 2012], based on mClock [Gulati et al. 2010],
supports max-min fairness and proportional shares at the VM pool level by dynamically
allocating the IO queue depth that a host can keep outstanding at the shared storage
device. IOFlow [Thereska et al. 2013] aims to enforce end-to-end throughput guarantee
policies for each IO flow under virtualized data centers with multilayer 10 stack by
bounding IO queue depth and dynamically throttling IO rate at each layer. PARDA
[Gulati et al. 2009] aims to improve performance isolation and throughput fairness
among hosts each of which runs one or more VMs by adjusting per-host 10 queue
depth. SFQ(D) [Jin et al. 2004] provides a desired level of throughput fairness across
concurrently running IO workloads by IO queue depth adjustment at the interposed
scheduler, which inherently strikes a trade-off between the maximum performance
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deviation and the IO concurrency of the underlying storage server. In addition, some
approaches such as Facade [Lumb et al. 2003], Avatar [Zhang et al. 2006], SMART
[Nieh and Lam 2003], and BVT [Duda and Cheriton 1999], adopt I0 queue depth
control to enforce 10 latency targets for coscheduled 10 workloads with a compromised
level of IO concurrency.

The third is the class of solutions that support request size control, such as Cake
[Wanget al. 2012] and IOFlow [Thereska et al. 2013]. The performance penalty incurred
by a request with a large 10 size can very likely lead to SLO violations [Wang et al.
2012]. Cake [Wang et al. 2012] splits a large request (e.g., 512KB) into several smaller
requests with an appropriate IO size so as to reduce the queue time. And IOFlow
[Thereska et al. 2013] adopts a similar scheme to alleviate the probable performance
penalty.

However, the preceding solutions do not address the impact of request size variability
on the performance variability that can very likely result in SLO violations, especially
for storage bandwidth compounded by two factors: IO throughput and request size.
More importantly, the association and the interplay between the timeliness of 10 control
and the precision of SLO enforcement have not been exploited. V-Cup, by contrast,
focuses on the performance variability and the timeliness of IO control for the metric
of storage bandwidth by combining the techniques of request size variability control
and IO throttling in a VM-oriented end-to-end fashion. In this way, V-Cup is able to
support near-precise SLO enforcement under consolidated VM environment. With the
support of the easy-to-specify and technology-agnostic SLO by providing a particular
value for the bandwidth of a VM, tenants can customize their desired performance
more intuitively and easily.

7. CONCLUSION

In this article, we address the challenge of providing VM-oriented customizable SLO
and its N-PSE for the storage bandwidth of VMs. We propose a framework V-Cup
consisting of multiple auto-tuners. Each auto-tuner can carry out the fine-grained
performance tuning for each VM with improved IO control timeliness that is critical
to reducing the fluctuation of bandwidth and more rapidly coordinating bandwidth to
adapt to variable IO characteristics. Our evaluation of V-Cup shows that it is able to
provide the N-PSE for the storage bandwidth of VMs by maintaining a lower level of
absolute storage bandwidth error and storage bandwidth variability. As future work,
we are trying to realize the idea of N-PSE on customizable hybrid metrics for storage
performance in cloud services.
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