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Abstract—Consolidating applications is a practical necessity
in today’s datacenters to reduce cost and improve resource uti-
lization. However, resource sharing among different applications
may result in high latency in responses to user requests. Due to
the lack of a performance model for tail latency of Fork-Join
structures, which underlay the workflows of lots of datacenter
applications, the current practice is to overprovision resource in
an attempt to satisfy as many user requests as possible. However,
this practice leads to low resource utilization. Therefore, it is of
importance to have a performance model that can accurately
predict tail latency in such an environment, especially at high
load regions, where resource provisioning is desired at most. In
this paper, we propose an analytical solution for the prediction of
tail latency of a target application in a consolidated environment
where it is mixed with other background applications. The
proposed model is validated against simulation through extensive
case studies. The experimental results show the effectiveness of
the proposed model in tail latency prediction at high load region,
yielding all the prediction errors well within 10% at the load of
75% or higher, making the model a valuable tool for resource
provisioning and supporting scheduling decisions in datacenter
clusters to guarantee user satisfactions.

Index Terms—tail latency, Fork-Join queuing networks, con-
solidated datacenters, resource provisioning.

I. INTRODUCTION

Parallel computing has become predominant in datacenters
nowadays due to ever-increasing amount of data to be pro-
cessed in datacenter applications. Such applications usually
need to be split into smaller tasks that are executed concur-
rently on hundreds or thousands machines for faster response
time. While parallel computing can improve responsiveness
and scalability, it makes effective job scheduling and resource
provisioning extremely challenging. For example, the run-time
variabilities of distributed task execution times, especially in
the presence of synchronization barriers, can result in highly
variable job completion times.

Similarly, consolidating applications in datacenters becomes
a necessity to reduce cost and improve the return on investment
by increasing the utilization and allowing resource sharing
among different applications [1]. Unfortunately, this comes at
a price of poor user experience and high delays in processing
user requests. Therefore, maintaining a good user experience
with guaranteed low latency in response time has become the
current trend in datacenters [2], [3]. This newly arising demand
for providing users with guaranteed service level objectives
(SLOs) provoked lots of researchers to engineer many novel

solutions to this challenging problem [4]–[6]. However, due to
the lack of a performance model for the problem, a common
practice today for datacenter applications is to overprovision
resources to ensure that a job can finish within the allocated
time slot or meet a predefined SLO in terms of, e.g., tail
latency. Consequently, to meet the performance targets for
applications, today’s datacenters typically run at 10%–50% of
their capacities [7], [8]. This may result in high costs from
both user’s and service provider’s points of view.

Fork-Join structures are basic building blocks that underlay
the workflows of many datacenter applications, e.g., web
search, machine-translation, and social networking [2]. In
these structures, an incoming job spawns multiple tasks which
are processed by multiple processing nodes in the system.
The job is considered to be completed when all of its tasks
are finished and all the partial results are merged, which is
called barrier synchronization. Therefore, the slowest task
determines the response time of such a job. This process-
ing pattern exactly follows the classical Fork-Join queuing
network (FJQN) model, which is notoriously hard to solve
in queuing theory [9]. Most of previous works on FJQNs in
the literature attempt to find the approximation for job mean
response time [10]–[13] and its bounds [14], [15]. With the
emergence of user-facing latency-sensitive applications, tail
latency has drawn more attentions recently. Several recent
works [16]–[19] attempted to provide analytical solutions for
the tail latency in FJQNs. However, they primarily considered
only a flow of jobs from a single application. The work
in [19] included the approximation for the tail latency of
consolidated applications but based on a black-box approach,
which approximates the task response time distributions using
the measured means and variances of task response times on
the Fork nodes.

To the best of our knowledge, no previous work attempts
to provide an analytical solution for FJQNs with consolidated
workloads. This is the primary motivation for this research
work. In this paper, we propose a closed-form solution, i.e., a
white-box approach, to the approximation of the tail latency of
a given target application in FJQNs with a mixture of applica-
tions, each following a different service time distribution. We
will elaborate more on the effect of consolidated workloads
on the accuracy of the prediction model through detailed sce-
narios, considering different distributions for different applica-
tions and different percentages of target application against the
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background applications. This was not adequately covered in
[19] where only a trace-driven simulated result based on black-
box measurements was presented as a shrunken section in the
published work. For all the cases studied, the validation against
simulation results shows that the proposed model yields all
the prediction errors well within 10% at the load of 75%
or higher. This indicates the effectiveness of the proposed
model in predicting tail latency for a target application in a
consolidated environment at high load regions, where resource
provisioning is most desirable.

The rest of the paper is organized as follows. Section II
presents the proposed prediction model for the tail latency of
a target application in a mixture of consolidated applications.
Section III shows experimental results for different scenarios
of the consolidated workloads. Section IV reviews related
work. Finally, Section V concludes the paper and discusses
future work.

II. THE PROPOSED MODEL

In this section, we present our proposed analytical solution
to the approximation of the tail latency of a target application
in a consolidated environment, i.e., a mixture of applications
sharing common datacenter resources. We shall derive a
closed-form approximate solution for the pth percentile of a
target (or tagged) application in the mixture.

1

λ
k

n

λ

(fi(xi), pi)’s

Fig. 1: A Fork-Join model with each node as an M/G/1 queue.

Consider a system running a mixture of applications
A1, A2, . . . , Am with corresponding weights p1, p2, . . . , pm in
the mixture as in Fig. 1. The applications flow into the system
with an average arrival rate of λ.

Assume that service times of application Ai follow distri-
bution fi(x), i.e., Xi ∼ fi(x), whose mean and variance are
µi and σ2

i , respectively.
Let X be a random variable representing service times

on each node in the system. For a long runtime and load
balanced between nodes, the effective service time distribution
puts on each node can be viewed as a mixture of individual
distributions with their corresponding weights, i.e.,

X ∼ f(x) =
m∑
i=1

pi · fi(x). (1)

The kth moment of X can be written as

µ(k) = E[Xk] =
m∑
i=1

pi · E[Xk
i ]

=
m∑
i=1

pi · µ(k)
i = E[E[Xk|µi]], (2)

where µ(k)
i is the kth moment of Xi.

According to the law of total variance, the variance of X
is given by

V ar(X) = E[V ar(X|µi)] + V ar(E[X|µi])

=
m∑
i=1

pi · σ2
i +

m∑
i=1

pi · µ2
i −

(
m∑
i=1

pi · µi

)2

(3)

In this paper, we assume that the applications arrive at
the system following Poisson process, which is a reasonably
acceptable model for datacenter applications in practice [20],
and their tasks are randomly distributed to the Fork nodes.
Therefore, each Fork node can be viewed as an M/G/1 queue
system, i.e., a Poisson arrival process with a general service
time distribution and one service center.

The first and second moments of the task waiting time at
each Fork node, i.e., an M/G/1 queuing system, are given as
follows [21],

E[W ] =
λE[X2]

2(1− ρ)
=
ρE[X]

1− ρ

(
1 + C2

X

2

)
, (4)

E[W 2] = 2E[W ]2 +
λE[X3]

3(1− ρ)
, (5)

where E[Xk] is the kth moment of the service time of
the mixture given by Eq. (2); C2

X = V ar(X)/E[X]2 is
the squared coefficient of variation with V ar(X) being the
variance given by Eq. (3); and ρ = λE[X] is the utilization or
load on each Fork node at average arrival rate λ.

Therefore, the mean and variance of response times of the
target task at each Fork node can be written as,

E[T ] = E[W ] + E[Xt], (6)
V ar(T ) = V ar(W ) + V ar(Xt),

= (E[W 2]− E[W ]2) + (E[X2
t ]− E[Xt]

2), (7)

where E[Xt] and E[X2
t ] are the first and second moments of

the target task service time; and E[W ] and E[W 2] are given
in Eqs. (4) and (5).

It was proven that the waiting time distribution for G/G/m
queue systems at heavy traffic conditions converges to an
exponential distribution [22], [23]. Inspired by this result, the
work in [18] postulated that the response time distribution
can be approximated by a generalized exponential distribution
as in Eq. (8), which outperforms the exponential distribution
in term of tail latency prediction at high load regions for a
wide range of service time distributions, including light-tailed,
heavy-tailed, and empirical distributions,

FT (x) = (1− e−x/β)α, x > 0, α > 0, β > 0, (8)
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where α and β are shape and scale parameters, respectively.
Similarly, in this paper, the response time distribution of

the target task on each Fork node is also approximated by the
generalized exponential distribution as in Eq. (8), whose mean
and variance are given by [24],

E[T ] = β[ψ(α+ 1)− ψ(1)], (9)
V ar(T ) = β2[ψ′(1)− ψ′(α+ 1)], (10)

where ψ(.) and its derivative are the digamma and polygamma
functions. Given service time distribution fi(xi)1 and weight
pi (i = 1, 2, . . . ,m) for each application, one can find param-
eters α and β for the target task by plugging the calculated
mean and variance from Eqs. (6) and (7) into Eqs. (9) and
(10), respectively, and solving this system of equations.

Assume that the jobs from the target application is forked to
k nodes (1 ≤ k ≤ N ) with corresponding target task response
time distributions FTj (x)’s (j = 1, 2, . . . , k), as in [19], the
system response time distribution for the target application can
be approximated as,

F (x) = P ( max
1≤j≤k

Tj ≤ x)

≈
k∏
j=1

FTj (x) =
k∏
j=1

(1− e−x/βj )αj , (11)

and the pth percentile can be written as,

xp = F−1(p/100). (12)

In case all the Fork nodes are homogeneous, the target
response time distribution can be simplified as,

F (x) = (1− e−x/β)kα (13)

from which the pth percentile can be derived as,

xp = −β log
(
1− (

p

100
)

1
kα

)
. (14)

Eqs. (12) and (14) show that the pth percentile, i.e., tail
latency, of the target application can be expressed as a function
of αj’s and βj’s and in turn a function of means and variances
of the target task response times, according to Eqs. (9) and
(10). Clearly, this establishes a link between job-level SLO,
i.e., the job tail latency requirement, and task budgets.

III. EXPERIMENTS AND RESULTS

In this section, we validate the predicted tail latencies, e.g.,
the 99th percentile of response times, for a target application in
a system with a mixture of applications against those from the
simulation. The accuracy of the prediction is measured by the
relative error between the predicted value from the proposed
model, tpred, and the simulated one, tsim,

err = 100 ·
tpred − tsim

tsim

1Indeed, the approximate solution in this paper requires only the first three
moments of the applications’ tasks, not the entire task distributions.

To illustrate the effectiveness of the proposed model, here
we consider some typical scenarios with two classes of ap-
plications, a target application, which needs to be kept track,
and a background application, which represents the remaining
applications running in the system. The validation is performed
under different settings for the target and background appli-
cations, including simple cases with the same type of service
time distribution with different parameters and complicated
cases with two different distributions. We incorporate both
light-tailed and heavy-tailed distributions in the scenarios to
represent different applications. In particular, we consider the
following distributions:
– A light-tailed Exponential distribution (Exp) whose CDF is

defined as [25]

FXi(x) = 1− e−
x
µ x ≥ 0, (15)

where µ is the mean service time (µ > 0),
– A heavy-tailed truncated Pareto distribution (TPa) [25]

whose CDF is given by

FXi(x) =
1− (L/x)α

1− (L/H)α
, (16)

where α is a shape parameter; L and H are lower and upper
bounds, respectively.
We report the results for the systems with different numbers

of Fork nodes, i.e., N = 10, 100, and 500, and different
weights for the target application in the mixture, i.e., 10%,
50%, and 90%, assuming that the tasks spawned from all the
incoming jobs are randomly dispatched to N nodes in the
system, i.e., k = N . Specifically, we consider three scenarios:
– Scenario 1–The same distribution (Fig. 2): Exponential

distribution for both target and background applications with
different mean service times, µtg = 13.78ms for the target
and µbg = 4.22ms for the background.

– Scenario 2–The same distribution (Fig. 3): truncated Pareto
distribution for both target and background applications with
the same coefficient of variation CV = 1.2 and different
mean service times, µtg = 4.22ms for the target and µbg =
15.0ms for the background, which results in the distribution
parameters αtg = 2.0119, Ltg = 2.14ms,Htg = 276.63ms
for the target and αbg = 2.0119, Lbg = 7.75ms,Hbg =
276.63ms for the background.

– Scenario 3–Different distributions (Fig. 4): Exponential
distribution with mean service time µtg = 4.22ms for
the target application and truncated Pareto distribution with
coefficient of variation CV = 1.2 and mean service times
µbg = 15.0ms for the background application.
Figs. 2–4 show the prediction errors for all the cases studied

with different load regions, i.e., 50%, 75%, 80%, and 90%.
The results show that the prediction model is able to yield
quite accurate predictions for the 99th percentiles of job
response times, with most of the errors within 10% at the
load of 75% or higher. This makes the proposed solution a
powerful tool for resource provisioning in datacenters with
consolidated applications at high load regions, where precise
resource provisioning is most desirable.

2019 Workshop on Computing, Networking and Communications (CNC)

267



Load (%)

50 75 80 90

E
rr

o
r 

(%
)

-30

-20

-10

0

10

20

30

Exp (background) + Exp (target) - 99th

10-node

100-node

500-node

(a) Target = 10%
Load (%)

50 75 80 90

E
rr

o
r 

(%
)

-30

-20

-10

0

10

20

30

Exp (background) + Exp (target) - 99th

10-node

100-node

500-node

(b) Target = 50%
Load (%)

50 75 80 90

E
rr

o
r 

(%
)

-30

-20

-10

0

10

20

30

Exp (background) + Exp (target) - 99th

10-node

100-node

500-node

(c) Target = 90%

Fig. 2: Prediction errors for the cases of different exponential distributions for both background and target tasks.
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Fig. 3: Prediction errors for the cases of different truncated Pareto distributions for both background and target tasks.
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Fig. 4: Prediction errors for the cases of truncated Pareto distribution for background tasks and exponential distribution for
target tasks.

IV. RELATED WORK

Fork-Join structures underlay many datacenter applications,
in which the workflows are usually handled by a large number
of nodes and the partial results from those nodes are then
merged. Fork-Join structures are traditionally modeled by
Fork-Join queuing networks (FJQNs) [9]. FJQN models have
been studied extensively in the literature. To date, the exact
solution exists for a two-node network only [10], [26]. Most of
previous research efforts mainly focus on the approximation
of job mean response time [10]–[12] and its bounds [14],
[15], [17]. Some works attempt to find the approximation of
response time distribution for the networks applying simple
queuing models for each Fork node, e.g., M/M/1 [27] or
M/M/k [28], i.e., Poisson arrival process and exponential ser-
vice times with one or more servers. For general service time
distribution, the hybrid approach, which combines analysis and

simulation, are usually used to derive the approximation for
job mean response time [10], [13].

The approximation of tail latency for homogeneous FJQNs
with phase-type service time distributions is introduced in a
recent work [16], which is based on the analytical results from
single-node and two-node networks. Unfortunately, the com-
putational complexity of this approach renders it inapplicable
to online resource provisioning. Also, it only covers a limited
design space and thus cannot be used to facilitate resource
provisioning in practice. In [18], [19], the authors propose to
use a black-box approach for the approximation of tail latency
at high load regions, in which each Fork node was treated as
a black-box. The approach requires only measured means and
variances of response times at the Fork nodes as input.

To our knowledge, no previous research effort provides
analytical solutions for the approximation of the tail latency
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in FJQNs with consolidated workloads. The work in [19]
does consider consolidated workloads but using the black-box
approach, i.e., approximating task response time distributions
based on the measured means and variances of response times
on the Fork nodes. Here we present an analytical solution, i.e.,
a white-box approach, for the prediction of the tail latency
in a consolidated environment and elaborate more on the
consolidated impact on the accuracy of the prediction model.
The proposed solution could be of great help for future
research works that target the consolidated applications in
FJQNs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an analytical solution accom-
panied by several case studies for the prediction of tail
latency regarding the consolidated applications in datacenter
environments. Provided the results of three scenarios with
different load characteristics, the prediction model has proven
to be reliable, yielding all the errors well within the acceptable
window of accuracy, 10% at the load of 75% or higher, for all
the cases studied. These encouraging results suggest that the
proposed model could be used to translate user demands into
task budgets which in turn would help a scheduler make better
scheduling decisions to satisfy user requirements. We look
forward to extending this work for more sophisticated cases
that include multiple processing stages, which is commonly in
many production environments [29].
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