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Abstract

In today’s datacenters, job heterogeneity makes it dif-
ficult for schedulers to simultaneously meet latency re-
quirements and maintain high resource utilization. The
state-of-the-art datacenter schedulers, including central-
ized, distributed, and hybrid schedulers, fail to ensure low
latency for short jobs in large-scale and highly loaded
systems. The key issues are the scalability in central-
ized schedulers, ineffective and inefficient probing and re-
source sharing in both distributed and hybrid schedulers.

In this paper, we propose Pigeon, a distributed, hierar-
chical job scheduler based on a two-layer design. Pigeon
divides workers into groups, each managed by a sepa-
rate master. In Pigeon, upon a job arrival, a distributed
scheduler directly distribute tasks evenly among masters
with minimum job processing overhead, hence, preserv-
ing highest possible scalability. Meanwhile, each master
manages and distributes all the received tasks centrally,
oblivious of the job context, allowing for full sharing of
the worker pool at the group level to maximize multiplex-
ing gain. To minimize the chance of head-of-line block-
ing for short jobs and avoid starvation for long jobs, two
weighted fair queues are employed in in each master to
accommodate tasks from short and long jobs, separately,
and a small portion of the workers are reserved for short
jobs. Evaluation via theoretical analysis, trace-driven sim-
ulations, and a prototype implementation shows that Pi-
geon significantly outperforms Sparrow, a representative
distributed scheduler, and Eagle, a hybrid scheduler.

1 Introduction

Workload heterogeneity has been a long-standing chal-
lenge in datacenter scheduling. Jobs that differ in exe-
cution time and fanout degree have distinct requirements
for scheduling. Short jobs have stringent latency re-
quirements and are sensitive to scheduling delays; long
jobs, which usually have a large fanout and high resource
demands, require high-quality scheduling, e.g., improv-

ing load balance, but can tolerate some scheduling de-
lays. While short jobs are usually user-facing applica-
tions [3, 16] and important to user-perceived quality-of-
service, long jobs help improve datacenter resource uti-
lization. Therefore, it is common practice to collocate
short and long jobs in datacenter management, but meet-
ing the diverse needs of heterogeneous jobs remains a crit-
ical challenge.

Early datacenter job schedulers, e.g., Jockey [11],
Quincy [15], Tetrished [26], Delay Scheduling [28] are
centralized by design. Centralized schedulers rely on a
global view of resource availability to make scheduling
decisions. As systems scale, handling a large number of
jobs and collecting runtime status from a large number of
nodes inevitably become a bottleneck and incur a signif-
icant scheduling delay for each job. This is particularly
problematic for short jobs with tight deadlines.

To address the scalability issue, recent research, such as
Sparrow [19] and Peacock [18], employs multiple sched-
ulers to dispatch tasks in an independent and distributed
manner. Without requiring a global view of resources, dis-
tributed schedulers probe randomly selected nodes (usu-
ally twice as many as the number of tasks to be dis-
patched) and dispatch tasks onto the least loaded nodes.
The probe based technique has been proved to greatly im-
prove task queuing time compared to random placement
[19]. However, each scheduler still needs to maintain a
fairly large amount of probe related states and incurs non-
negligible probe processing overheads.

Besides the above issues, the collocation of heteroge-
neous workloads presents unique challenges to the cen-
tralized and distributed schedulers. First, heterogeneous
workloads require an effective mechanism to prioritize
short jobs over long jobs. Distributed schedulers lack co-
ordination among one another, thereby unable to enforce
global service differentiation among jobs. While central-
ized schedulers can employ priority queues to differenti-
ate task scheduling for different types of jobs, they are
usually work conserving – low priority, long jobs can uti-
lize the entire cluster to avoid wasting cluster resources.
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However, by doing so, a burst of long jobs can inflict
the so called head-of-line blocking to short jobs that ar-
rive immediately after the burst. Even in the presence of
centralized priority queues, tasks from short jobs need to
wait for the tasks of long jobs that have already been dis-
patched onto workers. Recent work BigC [4] and Kar-
ios [8] propose to suspend long jobs’ tasks via lightweight
virtualization to enable preemption on individual work-
ers, but have shown significant overhead in preempting
resource-intensive tasks. Second, high resource utiliza-
tion in datacenters that embrace workload consolidation
makes randomized load balancing less effective. For het-
erogeneous workloads that contain tasks of various sizes,
it is difficult to identify less loaded nodes. It has also been
reported that randomized load balancing is inefficient and
requires multiple rounds of probing to locate idle or less
busy nodes if most nodes are highly loaded [25].

Hybrid approaches, such as Mercury [17], Hawk [10]
and Eagle [9], combine centralized and distributed sched-
ulers, with former handling long jobs and the latter short
jobs. However, long and short jobs are scheduled inde-
pendently. This makes it difficult to mitigate the nega-
tive impact of long jobs on the performance of short jobs.
For example, Eagle [9] employs two techniques to en-
tirely eliminate the head-of-line blocking, i.e., multiple
rounds of probing for short-job task placement and a re-
served worker pool for short jobs. However, as the clus-
ter load becomes high, most of the short jobs are driven
by long jobs to the reserved pool [8], resulting in rapid
performance deterioration for short jobs. Our simulations
based on the Yahoo trace [6] show that the performance
of short jobs drastically degrades, by as many as 70 times
at high load compared with the non-resource-constrained
case (see Section 4 for details).

In this paper, we demonstrate that a hierarchical sched-
uler that employs a divide-and-conquer approach in task
scheduling can effectively overcome the shortcomings of
centralized, distributed and hybrid schedulers, and ensure
low latency for short jobs while maintaining high resource
utilization without significant sacrificing the performance
of long jobs. To this end, we propose Pigeon, a two-layer,
hierarchical scheduler for heterogeneous jobs. Pigeon di-
vides workers into groups and delegates task scheduling
in each group to a group master. Upon job submission,
Pigeon assigns the tasks of an incoming job to the masters
as evenly as possible. The dispatching of tasks onto mas-
ters is intended to be simple and does not consider the type
of tasks. The master in each group implements more so-
phisticated scheduling by maintaining two weighted fair
queues, one for tasks from short jobs and the other for
tasks from long jobs, respectively, and partitioning work-
ers in each group into high and low priority workers.
Tasks of short jobs can run on any workers while tasks
of long jobs can only run on low priority workers. Tasks

are only dispatched when there are idle workers from a
group and are otherwise queued at a respective priority
queue according to their types.

Although hierarchical construct has been widely used
in distributed systems, such as two-level hierarchical rout-
ing structure for the Internet and clustering for Peer-to-
Peer systems, to the best of our knowledge, Pigeon is the
first hierarchical solution purposely designed and used for
job scheduling in datacenters. Pigeon’s two-layer design
is specially useful for heterogeneous jobs. First, it effec-
tively mitigates head-of-line blocking of short jobs. The
simple job-oblivious task dispatching among masters pre-
vents a burst of tasks from monopolizing all workers and
provides a certain level of isolation between jobs. Unlike
in a centralized scheduler, where tasks of the same type
(i.e., short jobs) can only be served in FIFO order, tasks
of different jobs in Pigeon are evenly distributed among
masters, allowing tasks that arrive late to start to execute
even before some tasks of an earlier job start to execute
(see Section 4.1 for details). Second, the two-layer de-
sign preserves good scalability of distributed schedulers
but avoids the pitfalls of randomized load balancing. The
size- and type-oblivious task dispatching among masters
provide sufficient randomness for effective load balancing
without global knowledge and the weighted fair queuing
based scheduling within a group is deterministic, ensur-
ing that idle workers are rapidly located to serve latency-
sensitive jobs without starving the long jobs.

We perform an evaluation of Pigeon through theoreti-
cal analysis, simulation, and a prototype implementation
on the Amazon EC2 cloud. Analysis results show that
Pigeon can greatly increase the job-zero-queuing proba-
bility compared to Sparrow, a representative distributed
scheduler, for workloads that only contain short jobs.
Trace-driven simulations based on the Yahoo, Cloudera
and Google traces demonstrate that Pigeon outperforms
Eagle, a state-of-the-art hybrid scheduler, on short job per-
formance by as many as tens of times in a highly loaded
cluster. Experimental results on the Amazon EC2 also
confirm the effectiveness of Pigeon.

2 Pigeon Scheduler
This section presents Pigeon. We first give an overview of
Pigeon and introduce its task placement scheme, and then
discuss how it handles tasks at the master level.

2.1 System model

We consider a datacenter cluster composed of a large
number of workers, each of which can be an independent
processing unit, such as a CPU core. The workers can run
in parallel to execute different tasks. A key idea in Pigeon
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Figure 1: Overview of Pigeon.

is to divide workers into groups. Each group is managed
by a master which centrally controls all the tasks handled
by the group and places tasks among the workers in the
group. Distributed job schedulers directly distribute the
tasks belonging to a job to the masters. After a master
receives a task, it either directly sends the task to an idle
worker to be processed immediately or puts it in the cor-
responding task queue if there is no idle worker in the
group at the time. Figure 1 gives a system overview of
Pigeon. The system is composed of multiple distributed
job schedulers, masters, and workers. All job schedulers
work independently and do not exchange any task place-
ment information among themselves.

A master works at the task level and is mostly job obliv-
ious except for its awareness of whether a task is a low
or high priority one, based on whether the task is from a
short or a long job. It maintains two weighted fair task
queues, where the high priority and low priority queues
store tasks belonging to short and long jobs, respectively.
The classification of a job as a short or long job is handled
by schedulers, based on the type of application the job be-
longs to. For example, user-facing applications, such as
web searching and social networking, that generally have
short task execution times and require stringent tail la-
tency guarantee, can be classified as short jobs. On the
other hand, background batch applications, such as data
backup, that usually have long task execution times and
call for loose mean response time assurance, can be clas-
sified as long jobs. In Pigeon, a small number of workers
in the group, called high priority workers, are reserved ex-
clusively for serving high priority tasks. The other work-
ers, called low priority workers, can serve both low and
high priority tasks. Since all the workers in a group are
shared among tasks from short jobs in a work-conserving
manner, while all the low priority workers are shared by
tasks from long jobs, Pigeon can greatly improve resource
efficiency, achieving high multiplexing gain, compared
with the existing job schedulers that distribute tasks di-

rectly to individual workers.
A master can run in a worker who needs to be be allo-

cated enough computation resource to effectively handle
group status report and task placement functions. As we
shall discuss in more detail later, in Pigeon a master needs
to handle about one incoming task per second on average,
which is modest from computation resource demand point
of view.

2.2 Task Scheduling
Assume that a system has Ns schedulers and Ng groups
(i.e.,Ng masters). Each group hasNw workers in it. For a
job with F tasks (i.e., fanout degree, F ), the scheduler that
handles the job will distribute the tasks as follows. It sends
S = [F/Ng] task(s) to each master (here [x] represents
the floor of x, i.e., the integer part of x) and the remaining
r = F%Ng to r randomly selected masters. Since the
number of workers in each group is much larger than one
(i.e., a range of 50 to 100), according to the law of large
numbers, the workloads distributed to different groups are
expected to be much more balanced than those distributed
directly to individual workers. This helps synchronize the
task processing for tasks belonging to the same job and
hence, reduce the job completion time, with respect to the
existing job scheduling solutions.

Two task queues of different scheduling priorities are
set in each master to store the corresponding classes
of tasks1, i.e., tasks belonging to short and long jobs.
More specifically, the two queues are scheduled based
on weighted fair queuing with a single integer weight
to ensure that tasks from the high priority queue are
served with higher priority than those from the low pri-
ority queue, without starving the low priority tasks. The
queue scheduler ensures that out of every W tasks to be
served, at least one comes from the low priority task queue
if it is not empty. The queue scheduler degenerates to
strict priority queuing, when W is set to infinity. In this
case, the low priority tasks can be served only when the
high priority task queue is empty.

A master maintains two idle worker lists, i.e., the high
and low priority idle worker lists that record all high and
low priority workers that are currently idle, respectively.
A task sent to a master must include the priority of the
task. When a master receives a high priority task, it first
checks whether the low priority idle worker list is empty
or not. If the list is not empty, an idle worker from the list
is removed and assigned to handle the task. Otherwise, the
master checks whether the high priority idle worker list is
empty or not. If it is not empty, a worker is removed from
the list and assigned to handle the task. If both idle worker

1Pigeon can be easily extended to support more than two job classes
by allocating as many priority queues as the number of job classes with
weighted fair queuing.
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lists are empty, the high priority task is put into the high
priority task queue. When a master gets a low priority
task, it only checks the low priority idle worker list. If the
list is not empty, a worker is removed from the list to serve
the task. Otherwise, the task is put into the low priority
task queue. Whenever a worker is selected to handle a
task, the master sends the task to the worker, together with
the scheduler identifier (ID) for the scheduler from which
the task is received. If a master receives multiple tasks
from a job at a time, it handles these tasks one by one
consecutively following the same procedure.

We note that both reserving a given portion of work-
ers in a group for high priority tasks and setting W to
be a finite integer help to avoid head-of-line-blocking of
short jobs and starvation of long jobs, respectively. The
exact values of these two parameters must be properly se-
lected in practice. For all our real-world-trace-driven case
studies (see Section 4), we found that no more than 10%
of workers need to be reserved to achieve high short job
performance, lower than that of Eagle, a state-of-the-art
hybrid scheduler. In the meantime, W can be simply set
to infinity to achieve the highest short job performance
without significantly impacting the long job performance.
This is because the trace statistics show that the short job
execution time is less than 20% of the overall job exe-
cution time and hence, long jobs have little chance to be
starved by short jobs.

When a worker completes a task, it sends the re-
ports/results directly to the corresponding scheduler and
meanwhile, sends an idle notification message to its mas-
ter. This may further trigger a task in one of the two
queues to be sent to the worker or the worker to be added
to the high priority worker list if it is reserved for high
priority jobs, otherwise, to the low priority worker list.

3 Performance Modeling and Anal-
ysis

To gain insights on the Pigeon performance, in this sec-
tion, we conduct simple performance modeling and anal-
yses for Pigeon, compared with the analysis of a perfor-
mance model for Sparrow [19]. To be mathematically
tractable, we consider only one class of jobs. Hence, only
one task queue is used in each master. In this case, all
the workers serve tasks from all jobs. We focus on short
jobs, which are usually more latency sensitive and whose
fanout degrees are smaller than long jobs. We assume that
the job fanout degrees are no larger than the number of
groups.

Consider a cluster with Ng groups and each group with
Nw workers, with a total of Nc = NgNw workers in the
cluster. Assume that jobs arrive following a Poisson ar-
rival process with average arrival rate λ. All the jobs have

fanout degree, F , where F ≤ Ng , and the task execu-
tion time follows an exponential distribution with average
execution time, Te.

With the above model, each master can then be ap-
proximately modeled as running a single M/M/Nw task
queue [7] with average task arrival rate λt = λF/Ng .
The worker utilization is ρ = λtTe/Nw. Given that
F ≤ Ng , the probability, Ptask(0), that a task experiences
zero queuing time in a group is then given as follows [7],

Ptask(0) = 1− 1

1 + (1− ρ)( Nw!
(Nwρ)Nw

)
∑Nw−1
k=0

(Nwρ)k

k!

,

(1)
and the average queuing time Tq for a task in a master is

Tq =
1− Ptask(0)
Nw/Te − λt

. (2)

In this paper, a job is considered to have zero queuing
time if the job completion time (not including the commu-
nication time) is equal to its longest task execution time.
For example, assume that a job has 2 tasks with execu-
tion time 10s and 100s, respectively. If the job comple-
tion time is 100s, it experiences no queuing delay, even
though its task with 10s execution time may have queued
for some time, e.g., 50s.

Now we first consider the case that all the tasks in a job
have the same execution time. Then the job-zero-queuing
probability in Pigeon, PPIjob(0), can be written as,

PPIjob(0) = (Ptask(0))
F . (3)

In this case, the job-zero-queuing probability for Spar-
row, PSPjob (0), using 2F probes per job, is derived in the
original paper on Sparrow [19], as follows,

PSPjob (0) =

2F∑
i=F

(1− ρ)iρ2F−iC(2F, i), (4)

where C(2F, i) is the combination function.
Figure 2 depicts the analytical job-zero-queuing proba-

bility for Sparrow (i.e., Eqn.(4)) and Pigeon (i.e., Eqn.(3))
for two different group sizes, i.e., Nw=100 and 200 and
two job fanout degrees, i.e., F = 50 and 100. As one can
see, the job-zero-queuing probability for Sparrow starts
to drop at load 0.4 and quickly drops to near zero at load
0.6, whereas for Pigeon, similar drops occur in a much
higher load region, i.e., 0.6 to 0.8. It means that Pigeon
can work at 20 - 40% higher load than Sparrow, while
achieving similar job-zero-queuing performance as Spar-
row, demonstrating the effectiveness of Pigeon for job
scheduling, compared with Sparrow.

We also note that for Pigeon, when Nw increases from
100 to 200, the job-zero-queuing probability starts to drop
at load 0.7, 0.1 higher than the former case. But it quickly
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Figure 2: Job-zero-queuing probabilities for Sparrow and
Pigeon with two different group sizes (Nw=100 and 200).
All tasks in a job have the same execution time. (a) Job
fanout F=50; (b) F=100.

approaches 0 as the load approaches 0.9, similar to the
former case. This suggests that a larger group can improve
performance in the medium load region (0.7 to 0.8), but
not much in high load region (>0.9).

The above analyses assume that each task in a job has
the same execution time. However, real trace analyses
indicate that the task execution time can vary significantly
from one task to another for a given job. To capture the
performance impact of such variability, we consider the
case where the task execution time for a task in a given
job follows an exponential distribution.

We first calculate the average job queuing time, Tjob.
Since the job queuing time is defined as the queuing time
of the slowest task of the job, we need to find the queuing
time for the slowest task of the job. To this end, we ob-
serve from Figures 3(b) and 4(b) that the average queuing
time in Pigeon is much shorter than the average task exe-
cution time even at a high load (e.g., 90%). This suggests
that whichever task has the largest execution time is likely
to be the slowest one, regardless of its queuing time. This
implies that the average queuing time for the slowest task
can be simply approximated as the average queuing time
for all tasks, i.e., Tjob ≈ Tq .

Now we calculate the job-zero-queuing probability.
Consider two independent exponential distribution ran-
dom variables (t1 and t2) with average value Te, the joint
probability density function f(t1, t2) = 1

T 2
e
e−(t1+t2)/Te .

Then the probability of t1 − t2 > Tq under condition
t1 > t2 [23] is

P (t1 − t2 > Tq|t1 > t2) = e−Tq/Te . (5)

Let A1 and A2 be the tasks with the longest (t1) and
second longest (t2) execution times in a job, respectively.
Now the job-zero-queuing probability P dtjob(0) for a job
with different task execution times can be approximately
expressed as the probability ofA1 with zero-queuing time
(i.e., Ptask(0)) while t1−t2 > Tq , i.e., the execution time
difference between the longest and the second longest task
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Figure 3: Analysis (denoted as AN) vs Simulation (de-
noted as SM) at different group sizes. (a) Job-zero-
queuing Probabilities (b) Average job wait time.

execution time is greater than the average task queuing
time Tq , namely,

P dtjob(0) ≈ Ptask(0)e−Tq/Te . (6)

We verify the analytical approximations for Tjob and
P dtjob by simulation. Assume that Nc=30,000, F = 100,
and Te=100 ms. Each task execution time follows an ex-
ponential distribution. The communication time is set at
0.5 ms between any two nodes. We note that with com-
munication delay, the average job waiting time Tw is no
longer equal to the average queuing time, but rather the
average queuing time plus the communication time.

We study the Pigeon performance by changing Nw
from 50 to 200. Figure 3 depicts the job-zero-queuing
probability and the average job waiting time at two differ-
ent high loads (i.e., 80% and 90%). We note that the simu-
lation results (denoted as SM) closely match the analytical
ones (denoted as AN), e.g., less than 1% for the job-zero-
queuing probability for allNw’s tested. The largest differ-
ence is about 12% for the average waiting time at Nw=50
and the load of 90%. In this case, the simulated wait-
ing time (also queuing time) is longer than the analytical
one because the analytical results only consider the wait-
ing time for the task with the longest execution time. As
the job-zero-queuing probability is low (below 60%), the
contribution of other tasks may not be neglected, resulting
in larger errors.

The results verify that Eqns. (2) and (6) can be used to
estimate the performance of Pigeon for handling jobs with
fanout degrees less than the number of groups. The results
indicate that the job-zero-queuing probability increases
and the average waiting time decreases as the group size
increases. It means that a larger group can provide bet-
ter performance, particularly from 50 to 100. The perfor-
mance improves slower as the group size increases from
100 to 200, particularly for the average waiting time. Fur-
ther increasing the group size is expected to offer marginal
performance gain. This result provides some insight on
how to set the right group size when a cluster handles jobs
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Trace Fmax Fmin Favg Tmaxe (s) Tmine (s) T avge (s)

Yahoo 5900 1 39.91 21259.9 1.54E-5 118.78
Cloudera 51834 1 272.93 97941.8 3.89E-5 162.19
Google 49960 1 35.32 774922 1E-6 661.74

Table 1: Trace statistics of job fanout and execution time
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Figure 4: Analysis (denoted as AN) vs Simulation (de-
noted as SM) results with various cluster loads. (a) Job-
zero-queuing probabilities (b) Average job wait time.

with small fanout degree (i.e., the number of tasks in a job
is less than the number of groups in the cluster).

Now we study the performance of Pigeon by varying
cluster loads. Two cases with Nw set at 100 and 200
are studied. The results are given in Figure 4. Again,
the simulation results closely match the analytical ones.
The results indicate that the job-zero-queuing probabil-
ity is close to 1 even at load 80% and reduces to 0.7 at
load 90%. This means that most jobs do not need to be
queued even at high load, hence offering high probabil-
ity of meeting the tightest job performance requirements
at high load. We also note that the average waiting time
is very small (less than 4%) compared to the average task
execution time even at very high load, e.g., 90%. These
results clearly demonstrate the effectiveness of Pigeon for
job scheduling.

The following two sections test the efficiency of Pigeon
by large-scale simulation and on a small EC2 cloud clus-
ter, respectively.

4 Simulation Testing
To test the scalability and efficiency, we use simulation to
evaluate the performance of Pigeon against Eagle2 in large
clusters, using three real-world traces as input, i.e., Ya-
hoo [6], Cloudera [5], and Google traces [21]. The open

2As Eagle outperforms Sparrow and Hawk[10], only Eagle is com-
pared here.

source simulation code of Eagle [9] is used and a similar
event-driven simulator is developed for Pigeon.

Table 1 provides the statistics of these traces,
including the maximum/minimum/average job fanout
degrees (denoted as Fmax/Fmin/Favg) and maxi-
mum/minimum/average task execution time (denoted as
Tmaxe /Tmine /T avge ). We see that the job fanout degree
ranges from 1 to 51834; the execution time varies from
microseconds to over 700K seconds; and the average task
execution time ranges from 118.78 seconds to 661.74 sec-
onds. Unlike the modeled workload in the previous sec-
tion, these statistics indicate that the job size in terms of
both fanout degree and task execution time vary signifi-
cantly from job to job in practice. Such job heterogeneity
makes it difficult to meet service requirements for indi-
vidual applications, e.g., in terms of providing job com-
pletion time or throughput guarantee. For example, for
a cluster with 10K workers and a long job with fanout
degree of 50K, each worker needs to execute 5 tasks for
the job on average. The placement of such a job evenly
among all the workers in the cluster can take up all the
cluster resources at once, causing head-of-line blocking
to the upcoming short jobs. As aforementioned, to effec-
tively deal with the job heterogeneity issue, both Pigeon
and Eagle [9] reserve a subset of workers to be used by
short jobs only, at the group-level and cluster-level, re-
spectively. In what follows, we first discuss the parameter
settings, in terms of the short-vs-long job thresholds, the
reserved worker pool size, the communication delays, the
group size, and the weight value for weighted fair queuing
and then performance evaluation.

4.1 Parameter Settings

Short Jobs vs Long Jobs: As mentioned earlier, in
practice, a scheduler may rely on whether a job belongs
to a user-facing application to classify it as a short job
or not. However, due to the lack of the application
information for the three traces and to fairly compare
against Eagle, for Pigeon, we simply use the same short
job cutoff times, defined as the average task execution
time of a job, as those used in Eagle, i.e., 90.5811,
272.783 and 1129.532 seconds for the Yahoo, Cloudera
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and Google traces, respectively.

Reserved Worker Pool Size: The actual number of
workers reserved for tasks of short jobs has significant
impact on job completion times for both short and long
jobs. The more workers are reserved, the smaller the
job completion time for short jobs but the larger the job
completion time for long jobs. We study the performance
using the three traces by varying the worker reservation
ratio (due to page limitation, the results are not presented
here). By taking into account of the performance for both
short and long jobs, we decide to set the reservation ratios
at 2%, 8% and 9% for the Yahoo, Cloudea and Google
traces, respectively. For Eagle, against which Pigeon
is to be compared in the following section, we set the
reservation ratios for the three traces at the same values
as those used in [9], i.e., 2%, 9% and 17%, respectively.

Weight Value for Fair Queuing: The weight value
W is an important parameter for Pigeon. A smaller
(larger) W helps improve the performance of long
(short) jobs at the cost of the other. We study the Pigeon
performance by varying W from 5 to 100 and compared
to that with strict priority queuing (i.e. W is set to
infinity) (again, the results are not presented here due to
page limitation). We find that the short job performance
becomes very sensitive to W at high cluster loads when
W gets below 20. For example, while the 99th-percentile
short job completion time at W = 20 is within 140% of
that atW =∞, it increases to more than 300% atW = 5,
at high cluster loads for all the three traces. Meanwhile,
we find that the long job performance is insensitive to W
in a wide range, e.g., only 2% difference from W = 10
to ∞ at all cluster loads for all the three traces. In other
words, no long job starvation occurs even at W = ∞ for
all the three traces. So for all the simulation studies and
the testing on EC2 cloud, we simply set W = 20 and∞,
respectively.

Communication Delays: The communication de-
lays are set at 0.5 ms between any two nodes, i.e., a
scheduler and a master, a master and a worker, or a
worker and a scheduler.

Group Size: Without knowing the exact processing
overhead per task scheduling at each master, we have
not taken this overhead into account in both performance
modeling in the previous section and the simulation in
this section. As a result, intuitively, one would expect
that the testing results in both previous and this section
will be always in favor of larger group size, with the
group size equal to the cluster size offering the highest
performance (i.e., the case when Pigeon degenerates to a
centralized scheduler). While this intuition is confirmed
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Figure 5: Pigeon performance at different group sizes.

in the previous section based on the results from an ideal
model, much to our surprise, it turns out to be false as
confirmed by the simulation results in this section. More
specifically, we can conclude that Pigeon with the group
size in a finite range actually outperforms its centralized
counterpart, even when the centralized scheduler incurs
negligible processing overhead. The implication of this is
significant. It means that one can no longer assume that
so long as it is free from scalability concerns, centralized
scheduling is always the best choice, as it has a global
view of the cluster resource availability. In what follows,
we first identify the range and the preferred group size,
and then provide an explanation of why this seemingly
counter-intuitive phenomenon can happen.

We compare the Pigeon performance at different group
sizes, using the Cloudera trace as input for the simulation
(similar results are obtained for the Yahoo and Google
traces and hence are not given here). We consider the
cluster size of 12K and 18K, corresponding to high (about
93%) and medium (about 62%) cluster loads, respectively.
All other parameters pertaining to Pigeon are the same as
those given above. The 50th, 90th and 99th percentiles of
the short and long job completion times are used as per-
formance metrics.

From the results depicted in Figure 5 (normalized to
the centralized one), we can see that Pigeon performs bet-
ter than its centralized counterpart for all the three per-
formance metrics for short jobs, particularly at the high
load (Figures 5 (a)). At high load, the short job perfor-
mance gets better as the group size reduces from 150 to
50 and then becomes slightly worse as it further reduces to
25. The largest performance gains for short jobs are about
17%, 18% and 14% for 50th, 90th and 99th percentile
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job completion times at group size 50, compared to the
centralized one, respectively. Similar results with smaller
gains are observed at the medium cluster load (Figure 5
(c)). For long jobs at high load (Figure 5 (b)), the per-
formance is better (worse) than the centralized one when
group size is above (below) 50. The three percentiles of
job completion times decrease when the group size re-
duces from 150 to 100, and then increase when the group
size further reduces. In the medium load (Figure 5 (d)),
the performance for long jobs is worse than that of the
centralized one in the entire group size range studied. All
the three percentiles of long job completion time decrease
as the group size increases.

The above results indicate that Pigeon is not only more
scalable but also performs better than its centralized
counterpart for handling heterogeneous jobs, particularly
at high cluster loads. Based on these observations, which
agree with the observation made for the other two traces,
and also with reference to the analytical results for jobs
at small fanout, we suggest to set group size in a range
between 50 and 100 and we set the group size at 100 for
all the cases studied in this section.

Explanations for the Counterintuitive Phenomenon:
A key observation we make is that this phenomenon may
occur when both job fanout degree and task execution
time vary in a wide range, which is the case in practice
(see Table 1) but not for the model in the previous section
(that explains why we did not see this phenomenon there).
The best way to see why this is true is by example.

Consider job scheduling for a single type of jobs and a
cluster of 4 workers. At time 0, all the workers are idle
and job A with 6 tasks arrives, with task execution times
of 20, 1, 1, 10, 10 and 10 units. Immediately following
it are two other jobs B and C, each having 1 task with
execution time of 2 units. We further assume that there
is no processing overhead and the communication time
can be neglected. Now we compare the performance of a
Pigeon scheduler and its centralized counterpart.

First consider a Pigeon scheduler, where 4 workers are
divided into 2 groups with 2 workers each. Upon the ar-
rival of jobs A, B, and C, in that order, the first 3 tasks
(with execution times 20, 1 and 1) from A are sent to
group one and the other 3 tasks (all with execution time
10) to group two. Then the task from job B is sent to
group one and the task from job C to group two. In group
one, two tasks (with execution times 20 and 1) of job A
are served by workers 1 and 2 at time 0, respectively. At
time 1, worker 2 completes the task and immediately start
serving the remaining task from job A. It finishes the task
at time 2 and then serves the task from job B, which com-
pletes at time 4. In group two, at time 0, workers 3 and 4
serve 2 tasks from jobA and complete the tasks at time 10.
Then worker 3 serves the last task from job A and worker

4 serves the task from job C, which finishes at time 12.
As job A finishes at time 20, the job completion times for
the three jobs are 20, 4 and 12, for a total of 36 units.

Now, consider centralized scheduling. The first 4 tasks
(with execution times 20, 1, 1 and 10) from job A are
sent to workers 1-4 at time 0, respectively. At time 1,
workers 2 and 3 complete their tasks and then serve the
other two tasks from job A. At time 10, worker 4 finishes
its task and then serves the task from jobB, which finishes
at time 12. At time 11, workers 2 and 3 complete their
tasks, and then worker 2 serves the task from job C which
finishes at time 13. Again, job A finishes at time 20. So
the job completion times for the three jobs are 20, 12 and
13, respectively, for a total of 45 units, 9 units or 25%
more than the Pigeon scheduler!

From the above example, we see that for centralized
scheduling, a job with a large fanout degree (i.e., job
A) causes head-of-line blocking of the following jobs
of the same type, even when their fanout degrees are
low (i.e., jobs B and C). In contrast, for Pigeon, the
tasks for jobs are distributed to different groups. This
enhances the chance for tasks from later jobs to be served
before tasks from the earlier jobs due to heterogeneous
task execution time distribution. This helps reduce
the chance of head-of-line blocking of jobs with small
fanout degrees by jobs with large fanout degrees, hence,
resulting in better overall performance. While helping
more in alleviating head-of-line blocking by dispersing
the tasks of a job with a large fan-out degree to more
groups, using a smaller group size reduces multiplexing
gain. This help explain why Pigeon gives the overall best
performance at the group size in a certain range, i.e., 50
to 100.

Master Workload Estimation: Finally, with the
parameters given above, we can now estimate the offered
task load at a master. Assume that the cluster size,
Nc=20,000, and hence, the total number of masters,
Ng=200, given the group size, Nw=100. The real
trace statistics in Table 1 suggest that the average task
execution time is more than 100s (from 118s to 661s, to
be exact). It means that a master needs to handle about
only 1 task per second on average (or equivalently, 1 task
per 100 seconds per worker), this overhead is negligible.
In the case of a long job with a huge number of tasks,
such as a job with 50,000 tasks, each master will see a
burst of task arrivals of size 250. This is in stark contrast
with a distributed scheduler, who needs to generate and
dispatch 50,000 tasks. This example clearly indicates that
the resource demand on a master is modest and a single
worker should be sufficient to serve as a master, which
consumes only 1% (i.e., 1 out of 100) of the total worker
resources in the cluster. This means that indeed, Pigeon
is a highly scalable solution.
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4.2 Performance evaluation

The number of workers in the whole cluster is used as
a tunable parameter to adjust the load level. We use
50th, 90th and 99th percentile job slowdowns with re-
spect to the case of unlimited resources (i.e., the case with
zero communication time and zero task queuing time) for
both short and long jobs as performance metrics. More
specifically, the xth-percentile short/long job slowdown
is defined as the xth-percentile short/long job completion
time divided by the xth-percentile short/long job execu-
tion time. Here a job execution time is defined as the
largest task execution time among all the tasks in the job.

Figures 6 and 7 give the slowdowns of the 50th, 90th
and 99th percentiles of short and long jobs for all the three
traces. First, we note that at the fixed job arrival rate, as
the number of workers in the cluster increases, the slow-
downs of the two schedulers converge and approach 1 for
both short and long jobs. This is expected, because as the
cluster size becomes larger, or equivalently, the load be-
comes lighter, all the jobs experience smaller queuing de-
lays and hence, smaller job completion times, regardless
what scheduling mechanism is used. Hence, it is more
interesting and important to focus on small cluster sizes
or high load regions. As the cluster size reduces, we can
see that remarkable performance gaps between the two
emerge.

In the case of the Yahoo trace, at the cluster size of
3K, the slowdowns for short jobs in Pigeon are about 1.3,
1.5 and 5.3 times which indicates the queuing times are
less than one job execution time for the 50th and 90th
percentiles, and just above 5 job execution times for the
99th percentile. The results indicate that Pigeon achieves
excellent short job performance even at very high cluster
loads (about 95%). In contrast, the slowdowns for Eagle
are above 70 times for all the three percentiles, implying
that for Eagle, the queuing times are more than 70 job ex-
ecution times for short jobs. Similar results can be found
with the Google and Cloudera traces as shown in Figures
6(b)-(c). In what follows, we explain why Pigeon outper-
forms Eagle by such big margins.

Eagle improves over Hawk (detailed in [9] and not
shown here) by allowing workers who are handling long
jobs to reject the probes coming from distributed sched-
ulers who handle short jobs. This allows a distributed
job scheduler to issue more rounds of probes to discover
workers that are not handling long jobs, hence alleviating
the head-of-line blocking effect for short jobs. However,
most lower priority (i.e., non-reserved) workers can still
be blocked by the long jobs, either at high load or when-
ever a long job with a large fan-out degree arrives. In this
case, after multiple rounds of random probing, most of the
tasks from short jobs are forced to be served by the high
priority (i.e., reserved) workers, which however, may be-

come the bottlenecks themselves. For example, for the
Yahoo trace, consider the case of a cluster with 3K work-
ers and 60 high priority workers (2% as set in Eagle [9])
for short jobs. When a long job with 5900 tasks (i.e., the
maximum number of tasks in a job for the Yahoo trace)
arrives, each low priority worker has to serve, on average,
about 2 tasks of the job. After the tasks of the long job are
placed, all the upcoming short jobs following this long
job are forced to be served by only 60 high priority work-
ers after a number of rounds of probing. In other words,
all the low priority workers are blocked by the long job,
hence resulting in big job completion time for short jobs.
The key difficulty is that as a hybrid scheduler, Eagle dis-
tributes tasks from short and long jobs independently by
distributed and centralized schedulers, respectively.

In contrast, Pigeon allows centralized scheduling of
tasks coming from both short and long jobs and full re-
source sharing at the group level. This makes it possible
for Pigeon to largely remove head-of-line blocking with-
out starving the long job through weighted fair queuing
and worker reservation. Again, consider the above exam-
ple where a long job with 5900 tasks arrives at a cluster
with 3K workers. Assume that the workers are divided
into 30 groups of 100 each with 2 (i.e., 2%) workers re-
served for the tasks from short jobs. Now about 197 (i.e.,
5900/30) tasks from the long job are sent to each group. In
a given group, the master dispatches as many tasks out of
197 to the available low priority workers as possible and
the rest to the low priority queue, e.g., with 10 to the avail-
able low priority workers at the load of 90% (i.e., about
90% or 88 out of 98 are currently busy) and 187 queued.
The upcoming tasks of short jobs are either served by an
idle reserved worker or queued in the high priority queue.
However, in addition to the 2 high priority workers, when-
ever a low priority worker becomes idle, it will first have
high chance (19/20 at W = 20) to serve a task from the
high priority queue. Since most of the long tasks (i.e.,
187) are queued centrally at the master, not at the low pri-
ority workers, which however, is the case for Eagle, high
priority tasks following these low priority tasks will not
be blocked by the latter from accessing the low priority
workers. Moreover, a task at the head of the high priority
queue is likely to find an idle low priority worker soon, be-
cause the probability that one out of 98 busy lower priority
workers will finish its task in the near future is high. This
explains why Pigeon can significantly outperform Eagle
in terms of short job performance, especially in the high
load region.

The fact that Pigeon performs slightly better than Ea-
gle even for long jobs, despite the use of the weighted
fair queuing for short jobs over long ones, as depicted in
Figure 7, can be explain as follows. First, Pigeon gener-
ally reserves a smaller number of workers for short jobs
than Eagle (i.e., 9% vs. 17% and 8% vs. 9% in the cases
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Figure 6: Short job completion time
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Figure 7: Long job completion time.

of the Google and Cloudera traces, respectively and 2%
vs. 2% in the case of the Yahoo trace), hence allowing
more workers to be used by the long jobs. This explains
why overall Pigeon outperforms Eagle in the cases of the
Google and Cloudera traces but not as much in the Yahoo
trace. Second, for all the real traces studied, the overall
execution time for short jobs constitutes less than 20% of
the total job execution time, implying that the possible
negative impact of giving high priority to short jobs (i.e.,
letting W=20) on the performance of long jobs is quite
limited.

The above results clearly demonstrate that Pigeon is a
much more effective job scheduler than Eagle in terms
of both design complexity (e.g., without probing phase,
without having to run two different types of schedulers,
and no worker involvement of scheduling) and perfor-
mance.

5 Performance Evaluation on EC2
Cloud

In this study, we compare the performance of Pigeon
against both Sparrow [19] and Eagle [9], the state-of-the-
art distributed and hybrid job schedulers, respectively, in
a small cluster on the Amazon EC2 cloud. The Pigeon
implementation includes two parts: the Pigeon scheduler
code and the Spark plug-in. Distributed Pigeon schedulers
are concurrently deployed at the application frontends,

exposing services to allow the framework to submit job
scheduling requests using remote procedure calls (RPCs).
All RPCs for internal communications between modules
of a Pigeon scheduler are defined with Apache Thrift [1].
We directly run the available open source implementation
codes for Sparrow [19] and Eagle [9]. m4.large instances
are used to serve as workers, masters and schedulers.

The cluster is composed of 10 schedulers and 120
workers. For Pigeon and Eagle, 10% of the workers are
reserved for short jobs. In Pigeon, the workers are di-
vided into 3 groups with 40 workers each. One worker in
each group is selected as a master and W is set to infi-
nite (i.e., each master runs two strict priority task queues).
A sample job trace including 5000 jobs is extracted from
the Google trace. The task execution time is scaled to the
range of 10ms to 100s and the job fanout degree is scaled
to the range of 1 to 100. The short job cutoff time is set at
1s. It turns out that 10% jobs are long jobs, which how-
ever, consume about 88% overall task execution time, in
line with the statistics of the original trace.

We use average job arrival rate as a tunning knob to
adjust the cluster load. The job arrival process follows
the Poisson distribution. The experimental results are also
compared against the simulation results. The simulators
for Pigeon and Eagle are the same as the ones described
in the previous section and the open source event-driven
simulator for Sparrow [19] is used.

We find that the short job performance for Sparrow and
Eagle are very sensitive to the number of schedulers in use
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Figure 8: Experiment vs Simulation. Sparrow (a) short
job and (b) long job; Eagle (c) short job and (d) long job.

(by changing the number of schedulers from 1 to 10). This
is because the processing delay in the probe phase be-
comes non-negligible compared to the job execution time
for short jobs. In contrast, Pigeon offers almost the same
performance, regardless how many schedulers are used.
In all the experiments, we use 10 schedulers to minimize
the impact of the processing delay for Sparrow and Eagle.

Figure 8 depicts both measured (on EC2) (denoted as
Imp) and simulated (denoted as Sim) 50th, 90th and 99th
short and long job completion times normalized to Pi-
geon. The results for Sparrow and Eagle are depicted in
Figures 8 (a) and (b) and Figures 8(c) and (d), respec-
tively. Clearly, the experiment results are consistent with
the simulation results. The differences between experi-
ment and simulation are within 15% for short jobs and
5% for long jobs, mainly caused by the unaccounted pro-
cessing overhead in the simulation.

As Sparrow does not distinguish between short and
long jobs, it incurs up to 200 (10) times longer short job
completion times than Pigeon (Eagle), although it offers
up to 15% better long job completion times than both Pi-
geon and Eagle. This means that Sparrow is not effec-
tive in supporting short jobs in the presence of heteroge-
neous workloads. We also see that Pigeon provides sig-
nificant performance gain for short jobs over Eagle. For
example, at 90% load, the 50th, 90th and 99th percentile
short job completion times for Eagle reaches about 25, 30
and 7 times longer than those for Pigeon. Pigeon and Ea-
gle achieves comparable performance for long jobs at all
cluster loads. The experiment results indicate that Pigeon
is highly effective in handling heterogeneous jobs, which

agrees with the simulation results obtained from the pre-
vious section.

Both the simulation and prototype implementation
source codes will be made available in the public domain,
upon the acceptance of the paper.

6 Practical Considerations
This section discusses some practical implementation is-
sues, i.e., how to handle master failure and how to deal
with heterogeneous workers and task assignment con-
straints.

6.1 Master Failure Recovery
A master plays a key role in a group. If a master fails, all
the group information, such as the queued tasks and idle
worker lists, are lost. In a full-fledged implementation
of Pigeon, one may borrow a failure recovery mechanism
widely used in the traditional distributed systems for fail-
ure recovery [24]. To allow fast recovery from a master
failure, a second master is selected in a group. The sec-
ond master can be another worker. A master needs to pe-
riodically update the second master on the group informa-
tion and task state information. Whenever a master fail-
ure is detected, the second master can immediately take
the master responsibility from the failed master. When a
master failure happens, the second master sends a notice
to each worker in the group and each scheduler in the clus-
ter to notify them the changes, so that the subsequent tasks
and idle worker notices are sent to the new master. Then a
new second master should also be chosen for subsequent
backups.

If both masters fail at the same time, the group informa-
tion is lost. To quickly recover the group information, any
worker in the group that detects such a failure can take the
responsibility as a master. It broadcasts a message into
the group to ask worker status. Each worker sends its re-
sponse back to the new master with its status (idle or busy,
priority, executing task, etc.). The new master also needs
to send a message to each scheduler to get the task infor-
mation sent to the group to recover the task queue list in
the group. In case that multiple workers take the respon-
sibility as a new master at the similar time, these workers
can elect one as the new master based on some rules, e.g.,
the timestamp of master declaration time, CPU power or
storage capacity and so on.

6.2 Dealing with Heterogeneous Workers
and Tasks with Assignment Constraints

In the Pigeon design, we implicitly assumed that the same
number of workers are assigned to each group and all the
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workers have the same processing power. In practice,
however, the number of workers in a group may not be
conveniently set to be the same. Even if the numbers of
workers assigned to different groups are the same, differ-
ent workers may have different processing powers. More-
over, in practice, some tasks may have to be assigned
to specific workers, as the needed resources or data are
only available at those workers. All these may cause load
imbalance among worker groups and hence have a neg-
ative impact on the performance of Pigeon. One pos-
sible solution is to require that all masters report their
queue lengths for all the priority queues periodically to
distributed schedulers. This will allow distributed sched-
ulers to make more informed decision as to how to balance
the load among groups.

7 Related Work

Today’s dtacenter job schedulers can be classified into
three categories, i.e., centralized, distributed and hybrid.
The earlier job schedulers, e.g., Jockey[11], Quincy[15],
Tetrished[26], Delay Scheduling[28] and Firmament[12]
are centralized by design. A centralized scheduler can po-
tentially provide high worker utilization, as it has a global
view of the worker status for individual workers. But the
scalability and head-of-line blocking are the major prob-
lems concerning centralized scheduling solutions. The
scheduling decisions and status reports can overwhelm
a centralized scheduler and cause additional job delay.
Some shared-state schedulers, e.g., Apollo [2], Omega
[22], and Mesos[13], use a centralized resource manager
to maintain shared state. The job distributors are dis-
tributed but the decision maker is based on the shared sta-
tus of the cluster resource availability. The shared status
is updated by the distributed schedulers and/or workers.
However, the shared state may not be always up-to-date
and hence may result in job placement conflict and retries.
This approach still requires a central entity for shared sta-
tus maintenance. Recent work BigC [4] and Karios [8]
propose to deal with job heterogeneity by suspending long
jobs’ tasks via lightweight virtualization to enable pre-
emption on individual workers, but have shown significant
overhead in preempting resource-intensive tasks.

Sparrow [19], on the other hand, is a fully distributed
job scheduler based on random batch-based probe and
late task binding. Although free from the scalability is-
sues that plague the centralized job schedulers, the dis-
tributed schedulers and workers in Sparrow need to main-
tain fairly large amounts of task related state information
and incur high communication cost for probing, includ-
ing probe management, probe queuing, probe processing,
and redundant probe removals. Furthermore, it does not
perform well in highly loaded clusters nor in the pres-

ence of heterogeneous workloads. Another probe-based
distributed scheduler, Peacock [18], organizes workers
in a ring overlay network and a probe can be rotated to
its neighbors at fixed time intervals to balance the probe
queue lengths among workers. Peacock, however, re-
quires that the workers communicate with each other to
form and maintain a ring topology. Moreover, it inherits
much of the drawbacks pertaining to probe-based solu-
tions in general.

To solve the scalability issue while providing high per-
formance in the presence of heterogeneous jobs, Hybrid
schedulers [10, 9, 17, 27] are proposed. Hybrid schedulers
combine a centralized scheduler and a set of distributed
schedulers. Mercury [17] uses distributed schedulers to
place jobs without latency requirement and a centralized
scheduler to place jobs with guaranteed resource require-
ment. Hawk [10] uses a centralized scheduler for long
job placement and the distributed schedulers for short job
placement. The short job scheduling is similar to the
techniques used in Sparrow, i.e., batch probing and late
task binding based. Some workers are reserved to serve
short jobs only, as a way to mitigate head-of-line bock-
ing. Moreover, an idle worker can steal tasks belonging to
short jobs from other workers to improve efficiency. Ea-
gle [9] improves over Hawk by introducing sticky batch
probe with each probe staying on a worker until all the
tasks of the job finish. It also allows multiple rounds of
probing to mitigate head-of-line blocking. These hybrid
schedulers need a central scheduler that can still pose a
potential bottleneck. Moreover, short job scheduling is
still probe-based and hence, inheriting its shortcomings.

More complex queuing mechanisms than priority queu-
ing are being used to improve the job performance. Queue
reordering [9, 14, 26, 22] is used to reduce the job comple-
tion time. More complex queue management techniques
[20] such as appropriate queue sizing, prioritization of
task execution via queue reordering, and starvation free-
dom are also being used to improve the efficiency of job
scheduling.

8 Conclusions

In this paper, we propose Pigeon, a distributed job sched-
uler for datacenters. In Pigeon, workers are grouped.
Each group has a master worker which centrally manages
all the tasks handled by the group. Weighted fair queuing
is used to provide priority service differentiation between
tasks of short jobs and tasks of long jobs. A small portion
of workers in each group are reserved to serve high prior-
ity tasks only. The ability of each master in managing its
group resources centrally makes Pigeon highly effective
in scheduling heterogeneous jobs. The analysis, simula-
tion and experiment results demonstrate that Pigeon out-
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performs Sparrow and Eagle by significant margins.
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