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Abstract—This paper proposes an algorithm for optimal decen-
tralized traffic engineering in communication networks. We aim
at distributing the traffic among the available routes such that
the network utility is maximized. In some practical applications,
modeling network utility using non-concave functions is of
particular interest, e.g., video streaming. Therefore, we tackle the
problem of optimizing a generalized class of non-concave utility
functions. The approach used to solve the resulting non-convex
network utility maximization (NUM) problem relies on designing
a sequence of convex relaxations whose solutions converge to that
of the original problem. A distributed algorithm is proposed for
the solution of the convex relaxation. Each user independently
controls its traffic in a way that drives the overall network
traffic allocation to an optimal operating point subject to network
capacity constraints. All computations required by the algorithm
are performed independently and locally at each user using local
information and minimal communication overhead. The only
non-local information needed is binary feedback from congested
links. The robustness of the algorithm is demonstrated, where
the traffic is shown to be automatically rerouted in case of a
link failure or having new users joining the network. Numerical
simulation results are presented to validate our findings.

Index Terms—Distributed optimization, non-concave utility
maximization, traffic engineering.

I. INTRODUCTION

Modern communication networks simultaneously support

multiple users, services, and applications, each of which

requires diverse demands. Therefore, optimum resource al-

location among users and/or applications is of paramount

importance to assure high quality of service (QoS). Since

Kelly et al. introduced the Network Utility Maximization

(NUM) problem in [1], the NUM framework has found many

applications in the development of rate allocation algorithms

and internet congestion control protocols.

This paper considers the NUM problem in a connection-

oriented network where multiple paths are available for the

data of each user. The utility of a user is modeled as a

non-concave function and hence, the NUM is a non-convex

optimization problem. The objective is to develop a dis-

tributed control protocol which steers the traffic away from

congested links so that congestion is avoided and network

resource utilization is maximized. In particular, the protocol

runs independently in parallel at each source node using local
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1635106, FCC-1629625, and the China Scholarship Council.

information to allow fully distributed traffic control. The only

non-local information needed is whether the forwarding path

is congested or not, which is binary feedback from link nodes.

Applications including FTP and HTTP used to generate the

majority of the internet traffic which is considered elastic traf-

fic. Utility functions for elastic traffic are modeled as strictly

concave functions. Resource allocation algorithms for this

type of traffic have been well developed, e.g., [2]. However,

modern internet flows are dominated by real-time applications,

e.g., video and audio streaming, that are considered inelastic.

Users’ satisfaction for various inelastic applications cannot be

accurately modeled using concave functions. For example, the

video quality perceived by users on a mobile device is a non-

decreasing and step-like function with respect to data rate,

because users have almost similar quality of experience on

3 Mbps and 1 Mbps [3]. In addition, the utility for voice

applications is better described as a sigmoidal function [4].

Traffic flows with non-concave utilities have received little

attention although they represent important application needs

in practice. Researchers usually model the user-perceived qual-

ity of experience (QoE) as a logarithmic function by adopting

the proportional fairness criterion [5]–[7]. The advantage of

elasticity assumptions on rate demands is that the resulting

optimization problem is tractable, while the disadvantage is

that the associated rate allocation may not always favor flows

with small buffers [8]. When rate demands are not perfectly

elastic, the utility may not be modeled as a concave function.

The main challenge that faces resource allocation in networks

shared by inelastic applications is that non-convex optimiza-

tion problems are hard to be analyzed and solved, even by

centralized computational methods. The lack of convexity due

to the existence of inelastic traffic makes standard distributive

algorithms, such as TCP, operate inefficiently [9].

There have been some publications on centralized algo-

rithms [4] and distributed algorithms [10], [11] for non-

concave utility maximization. Reference [4] proposes a cen-

tralized algorithm based on sum-of-squares (SoS) relaxations

and positivstellensatz theorem in real algebraic geometry to

calculate approximations of the optimal solution along with

some performance bounds to evaluate the approximation error.

This efficient but centralized numerical method is suitable

for optimizing utilities that can be transformed to polynomial

utilities. In [10], the authors propose distributed but suboptimal
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heuristics for sigmoidal utilities. Reference [11] determines

the optimality conditions for the canonical distributed algo-

rithm to converge globally for nonlinear utilities. These two

approaches illustrate the choice between admission control

and capacity planning to deal with non-convexity. However,

neither approach provides a theoretically polynomial-time and

practically efficient algorithm (centralized or distributed) for

non-concave utility maximization. The lack of a comprehen-

sive distributed algorithm that allows network optimization for

inelastic applications is the main motivation behind our work.

The contributions of this work are summarized as follows.

• We propose a generic framework for the solution of the

NUM problem with non-concave user utility functions.

We design a sequence of convex relaxations whose solu-

tions converge to that of the original problem.

• We develop the distributed traffic allocation algorithm

(DTAA) that allows users to independently adjust their

traffic sending rates and/or redistribute traffic load among

multiple routes solely based on available local informa-

tion and binary feedback from the congested link nodes.

• The DTAA is shown to be robust to link failures and it

is scalable, where the traffic is automatically rerouted in

case of a link failure or when new users join the network.

II. PRELIMINARIES

For the ease of exposition, we briefly recall some mathe-

matical results that play a key role in establishing our findings.

Definition 1. A relation R ⊂ R
m ×R

m is strongly monotone

if there exists γ > 0 such that

(x1−x2)
T (y1−y2)≥γ‖x1−x2‖

2 ∀(x1, y1), (x2, y2) ∈ R. (1)

Theorem 1. Let f be a real-valued function, F be a compact

set, not necessarily convex, and µ be a probability measure

with support supp(µ). Then,

inf
x

{f(x) : x ∈ F} = inf
µ

{
∫

fdµ : supp(µ) ⊂ F

}

. (2)

Proof. The proof can be found in [12].

Theorem 1 has been used to convert polynomial opti-

mization problems into a sequence of convex semidefinite

programming problems with increasing size via optimizing

over moments of probability measures [12]. The problem of

moments bridges the gap between the optimization over a

space of probability measures whose support is contained in

a certain set and the optimization over the moments of such

measures. More precisely, given a sequence of scalars {tj}
ℓ
j=1,

the problem of moments is to determine whether there exists

a representing Borel measure that has {tj}
ℓ
j=1 as its first

ℓ moments. The following theorem provides necessary and

sufficient conditions for the existence of Borel measures whose

support is included in bounded symmetric intervals of the real

line [13].

Theorem 2. Given a sequence of scalars {tj}
ℓ
j=1, there exists

a Borel measure µ(.) with support contained in I = [−ǫ, ǫ]
such that µ(I) = 1 and tj =

∫

I
yjdµ if and only if

• when l is even, the following holds

M(0, ℓ) � 0 (3)

ǫ2M(1, ℓ− 1) � M(2, ℓ), (4)

• when l is odd, the following holds

ǫM(0, ℓ− 1) � M(1, ℓ) (5)

M(1, ℓ) � −ǫM(0, ℓ− 1), (6)

where M(k, k + 2h) ∈ R
(h+1)×(h+1) is the Hankel matrix

M(k, k + 2h) =













tk tk+1 . . . tk+h

tk+1
...

... tk+h+1

...
...

...
...

tk+h . . . . . . tk+2h













, (7)

and t0 = 1.

Proof. Theorems III.2.3 and III.2.4 in [14].

III. PROBLEM FORMULATION

This section introduces the notation used throughout the

paper. Furthermore, it presents the NUM problem formulation,

and highlights the challenges associated with its solution.

A. Notation

Consider a communication network represented by a set

L = {1, . . . , L} of directed links with finite capacities

c = [cl]l∈L, shared by a set of sources S = {1, . . . , N}. Each

source i ∈ S transmits data at rate xp
i along a predetermined

route p ∈ Pi, where each route p ⊂ L is a directed path

consisting of a set of links that connect the source to its

destination, and Pi is the set of all routes that can be used

simultaneously by source i. Each source i ∈ S has a utility

function Ui : R+ → R+. The utility of source i, Ui(ri),
is a function of the aggregate data rate transmitted over all

possible routes, where ri =
∑

p∈Pi
xp
i . Let the vector of

source i data rates over Pi be xi = [xp
i ]p∈Pi

∈ R
|Pi|
+ , where

|Pi| denotes the cardinality of Pi, and r = [ri]i∈S ∈ R
N
+ .

Define the matrix Ai = [apl,i]l∈L,p∈Pi
∈ R

L×|Pi| such that

its (l, p)th entry apl,i = 1 if route p ∈ Pi uses link l ∈ L,

and is 0 otherwise. Let P l
i = {p ∈ Pi : l ∈ p} be the set

of routes for the data of source i that use link l ∈ L, and

Sl = {i ∈ S : ∃p ∈ Pi s.t. l ∈ p} be the set of sources using

link l ∈ L.

B. Problem Statement

This work considers network utility functions that can be

expressed as a sum of local user utilities, i.e., we maximize

U(r) =
∑

i∈S Ui(ri) subject to network resource constraints

and QoS guarantees. The traffic is allocated so that no single

link in the network is congested. A link l ∈ L is said to

be congested if the sum data rate of all sources using that

link exceeds its capacity. The network capacity constraints are
∑

i∈S

∑

p∈Pl

i

xp
i ≤ cl, ∀l ∈ L. Furthermore, minimum QoS

guarantees are considered at each source i ∈ S in the form of

a lower bound on its aggregate data rate. Nevertheless, we take
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into account the existence of an upper bound on the data rate

of each source for practical reasons. Thus, bi ≤ ri ≤ Bi for

some bi, Bi ≥ 0 and all i ∈ S . That said, the optimal traffic

allocation that maximizes the network utility is obtained by

solving the following optimization problem

maximize
(xi,ri), i∈S

∑

i∈S

Ui(ri)

subject to
∑

i∈S

Aixi � c,

(xi, ri) ∈ Xi, i ∈ S,

(8)

where Xi=
{

(xi, ri) : ri =
∑

p∈Pi
xp
i , bi ≤ ri ≤ Bi

}

.

Most approaches developed in the literature for optimal

decentralized traffic allocation allow only for concave dimin-

ishing reward utility functions. However, in real-time applica-

tions, concave utility functions are not the best measure of user

satisfaction. This paper aims at developing a low-complexity

distributed algorithm that optimizes a generalized class of

non-concave user utility functions. The challenge of solving

the optimization problem (8) is two-fold. First, the problem

is non-convex since we aim at maximizing a non-concave

objective function. Second, global network information is not

available; a fact that stimulates the necessity of developing a

decentralized algorithm that converges to the solution of (8).

IV. MAIN RESULTS

We consider a general class of non-decreasing non-concave

polynomial-like user utility functions of the form Ui(ri) =
∑ℓ

j=0 pi,jr
j/ℓ
i for some pi,j ∈ R, and some ℓ ∈ Z+. The

motivation behind using this form of utility functions is three-

fold: i) the particular form of this function is flexible to the

extent that it can be used to approximate a wide variety of

utility functions arising in real-world applications, e.g., step-

like functions in the case of video streaming; ii) efficient

approximation techniques can be implemented to calculate

the coefficients pi,j , e.g., regression, SoS, and Chebyshev

polynomial approximation; iii) it leads to a formulation that

can be efficiently solved by decentralized algorithms.

A. NUM Convex Relaxation

We propose a convex relaxation of (8) with polynomial-

like utility functions by leveraging results from the moments

approach to polynomial optimization. Instead of solving (8),

we propose to solve the following semidefinite program:

maximize
(mi,xi,ri), i∈S

∑

i∈S

pT
i mi

subject to mi,0 = 1, i ∈ S

Mi(0, ℓ) � 0, i ∈ S

B2
i Mi(1, ℓ− 1) � Mi(2, ℓ), i ∈ S

mi,j ≤ r
j/ℓ
i , j ∈ {1, . . . , ℓ}, i ∈ S

∑

i∈S

Aixi � c,

(xi, ri) ∈ Xi, i ∈ S,

(9)

where pi = [pi,j ]j∈{0,...,ℓ}, mi = [mi,j ]j∈{0,...,ℓ}, and Mi ∈
R

(h+1)×(h+1) are Hankel matrices of the form

Mi(k, k+2h)=













mi,k mi,k+1 . . . mi,k+h

mi,k+1
...

... mi,k+h+1

...
...

...
...

mi,k+h . . . . . . mi,k+2h













. (10)

The following proposition constitutes a main result of this

paper; it states that an almost optimal traffic allocation which

maximizes the sum of local non-concave user utility functions

subject to network capacity constraints and QoS guarantees

can be obtained by solving a convex program.

Proposition 1. The solution of the NUM problem (8) with

non-concave polynomial-like user utility functions can be

approximated by solving the convex semidefinite program (9).

Proof. See Appendix A.

It is worth mentioning that (9) represents a relaxation of (8)

when ℓ is even. Nevertheless, a similar result can be obtained

when ℓ is odd by slightly modifying the constraints of (9)

based on Theorem 2. In (9), a sum of linear functions is max-

imized subject to convex constraints including linear matrix

inequalities, i.e., (9) is a convex optimization problem. There-

fore, (9) can be readily solved if global network information is

available using an algorithm for solving convex optimization

problems, e.g., gradient-based algorithms. Nonetheless, a main

objective of this paper is to develop a decentralized traffic

allocation algorithm that leverages local information available

at each user and minimal network information exchange.

B. Distributed Traffic Allocation Algorithm

In this section, we develop the DTAA, an iterative algorithm

that converges to the solution of (9) given the absence of global

network information. We move mathematical derivations to

Appendix B to enhance the readability of the paper.

Among the advantages of the proposed convex formulation

(9) for the NUM problem is that it is amenable to decentral-

ization. By examining (9), we notice the following:

• The variables mi and ri are local to the ith source and

need not be broadcasted to any other node.

• The objective function is a sum of local linear functions

of the local variables.

• The constraints Mi(0, ℓ) � 0, B2
i Mi(1, ℓ − 1) �

Mi(2, ℓ), mi,j ≤ r
j/ℓ
i , and (xi, ri) ∈ Xi are local

constraints to the ith source that can be handled locally.

• The only constraint that forces interaction among the

sources is the network capacity constraint.

We introduce some notations that render the formulation of

(9) conveniently compact. Let

Ki=

{

(mi,xi, ri) :mi,0 = 1,mi,j ≤ r
j/ℓ
i , j = 1, . . . , ℓ,

Mi(0, ℓ)�0, B2
i Mi(1, ℓ−1)�Mi(2, ℓ), (xi, ri)∈Xi

}

(11)
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Algorithm 1: DTAA

(ρ,{αn}n∈Z+
,{τk}k∈N, {λk}k∈N, z0 = [z0i ]i∈S , u0 = [u0

i ]i∈S )

1 Initialize z
0, u0

2 for k = 0, 1, . . . do

3 (mi,xi, ri)
k+1←argmax

{

p
T
i mi−

ρ

2

∥

∥xi−z
k
i +u

k
i

∥

∥

2
:

(mi,xi, ri) ∈ Ki

}

, i ∈ S.
4 Initialize z

k,1 ← z
k

5 for n = 1, . . . , τk − 1 do

6 Each source i ∈ S communicates z
k,n
i to Pi.

7 Each link l ∈ L sends b
k,n

l to Sl.

8 g
k,n
i ← z

k,n
i − x

k+1

i − u
k
i + λk

∑

l∈L

b
k,n

l al,i, i ∈ S.

9 z
k,n+1

i ←
(

z
k,n
i − αn

g
k,n
i

)+

, i ∈ S .

10 z
k+1 ← z

k,τk

11 u
k+1

i ← u
k
i + x

k+1

i − z
k+1

i , i ∈ S.

and C =
{

[xi]i∈S ∈ R

∑
i∈S

|Pi|
+ :

∑

i∈S Aixi � c
}

. Thus, (9)

can be compactly stated as follows:

maximize
(mi,xi,ri), i∈S

∑

i∈S

pT
i mi

subject to (mi,xi, ri) ∈ Ki, i ∈ S

x ∈ C,

(12)

where x = [xi]i∈S . For a reason that will become clear in

Appendix B, we introduce a new variable z = [zi]i∈S ∈

R

∑
i∈S

|Pi|
+ and obtain the equivalent optimization problem

maximize
(mi,xi,ri,zi), i∈S

∑

i∈S

pT
i mi

subject to (mi,xi, ri) ∈ Ki, i ∈ S

zi = xi, i ∈ S

z ∈ C.

(13)

Algorithm 1 summarizes the proposed optimal DTAA. The

vector xi stores the desired transmission rates of source i over

Pi. However, source i transmits with an actual rate vector

zi throughout Algorithm 1’s iterations. The constraint zi =
xi is not satisfied for every iteration. Nevertheless, both zi
and xi eventually converge to a consensus as the algorithm

keeps running. We proceed with introducing the parameters

of Algorithm 1 followed by a description of how it works.

In Algorithm 1, ρ ∈ R++, and {αn}n∈Z+
⊂ R++ is a

diminishing sequence of positive scalars that is not summable

but square summable, i.e.,
∑

n≥1 α
n = ∞, and

∑

n≥1(α
n)2 <

∞. For instance, αn = 1/n. The sequence {τk}k∈N ⊂ Z+ is

an increasing sequence of positive integers, i.e., τk+1 ≥ τk,

and {λk}k∈N ⊂ R++ is a sequence of positive scalars. The

superscripts k and n denote iteration indices. For every outer

iteration k, there exist τk − 1 inner iterations indexed by n.

Each source i ∈ S keeps the vectors pi, mi, xi, zi, and ui ∈
R

|Pi| as private information not shared with any other network

entity. Furthermore, source i knows the structure of the matrix

Ai that outlines the links used by its own routes, and need not

know any other information about those links. More precisely,

source i is oblivious to the capacities of the links used by its

routes and does not know whether other sources are sharing

those same links with it or not. In addition, the structure of the

set Ki is known for every i ∈ S , where (11) indicates that Ki

is fully characterized by local information available at source

i such as knowing the lower and upper bounds imposed on its

own data rate. The kth outer iteration of Algorithm 1 consists

of the following:

• In step 3, each source i ∈ S updates its desired rates xi

by solving a simple convex semidefinite program. This

step is carried out in parallel locally at each source.

• An inner loop of τk − 1 iterations is executed in parallel

at each source. In the nth inner iteration, each source

i ∈ S transmits data over its routes Pi at rates z
k,n
i .

Then, link nodes that is congested sends bk,nl to the set

of sources using that link, i.e., Sl. The binary feedback

bit bk,nl determines the status of link l ∈ L, where bk,nl

equals 1 if link l is congested, and is 0 otherwise. This

feedback information is used by each source i ∈ S to

update its actual data rate vector zi as in step 9.

• Each source i ∈ S updates the vector ui locally as in step

11. This step is carried out in parallel and independently

across all sources.

Indeed, Algorithm 1 provides fully distributed optimal traf-

fic allocation, where all the computations are performed in

parallel independently at each source node and need not be

broadcasted. Furthermore, the variable updates done locally at

each source node use local information and the only non-local

information needed is binary feedback from congested links;

hence, the network communication overhead is low.

V. NUMERICAL SIMULATIONS

This section presents an example application of the DTAA

developed in this paper. Numerical simulations of the proposed

algorithm are conducted to validate our findings. In particular,

the main objectives of this section are summarized as follows.

• We numerically show that the global optimal solution of

the non-convex NUM problem (8) can be approximately

obtained via solving the proposed convex relaxation (9).

• We show that the DTAA presented in Algorithm 1

converges to a solution of (9).

• We demonstrate the robustness of the DTAA to link

failures, and show that it automatically scales out to

accommodate new users joining the network.

A. Network Topology

We adopt the network model shown in Fig. 1, which is based

on the one considered in [15]. The network model allows for

multiple routes to be available for the data of each source. Fig.

1 shows the topology of the network considered as well as the

capacity of each link. We consider a total of N = 8 different

combination of source/destination nodes, where the intended

destination of the data sent by source Si is Di, i = 1, . . . , N .

The routes available for the data of each source are described

in Table I.
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Fig. 1. The topology of the network.

TABLE I
ROUTES AVAILABLE FOR THE DATA OF EACH SOURCE

S1 x
1
1
e2b2b8b4e4 S5 x

1
5
e3b3b8b7b6e6

|P1|=4 x
2
1
e2b2b8b3b4e4 |P5|=2 x

2
5
e3b3b4b8b5b7b6e6

x
3
1
e2b2b7b8b3b4e4

x
4
1
e2b2b8b4e4

S2 x
1
2
e2b2b8b5e5 S6 x

1
6
e2b2b1b7b6e6

|P2|=3 x
2
2
e2b2b7b5e5 |P6|=3 x

2
6
e2b2b8b7b6e6

x
3
2
e2b2b1b7b5e5 x

3
6
e2b2b7b6e6

S3 x
1
3
e1b1b7b8b4e4 S7 x

1
7
e1b1b2e2

|P3|=2 x
2
3
e1b1b2b8b4e4 |P7|=3 x

2
7
e1b1b7b2e2

x
3
7
e1b1b7b8b2e2

S4 x
1
4
e1b1b7b5e5 S8 x

1
8
e3b3b4e4

|P4|=4 x
2
4
e1b1b7b8b5e5 |P8|=2 x

2
8
e3b3b8b4e4

x
3
4
e1b1b2b7b5e5

x
4
4
e1b1b2b8b5e5

B. Validation of the Main Results

We propose to optimize a step-like non-decreasing utility

function. As suggested by [3], step-like functions are more

likely to express the video quality perceived by a user in

video streaming applications. For that reason, we show our

simulation results for utility functions given by

Ui(ri) =











0, if 0 ≤ ri < 1

1, if 1 ≤ ri < 2

2, if 2 ≤ ri ≤ 3

, i ∈ S. (14)

The optimal traffic allocation is obtained through solving (8),

where the matrices Ai, i ∈ S, and the vector c are constructed

using the information shown in Fig. 1 and Table I. The lower

and upper bounds imposed on the aggregate data rate of each

user are bi = 0 and Bi = 10, respectively, for all i ∈ S .

Obviously, the utility functions (14) are not in polynomial-

like form. Nevertheless, we approximate these utilities by

polynomial-like functions, i.e., we obtain the coefficient vec-

tors pi that render the polynomial-like functions close enough

to (14) according to some defined metric, where we choose

to show results for ℓ = 6. We refrain from detailing the

approximation technique used for that purpose since it is not

the main focus of this paper and due to space limitations.

0 5 10 15 20
0
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DTAA

Fig. 2. Network utility function.

The non-convex NUM problem (8), with the polynomial-

like approximation of (14), is solved using the genetic algo-

rithm (GA) while assuming the availability of global network

information. The traffic allocation obtained through the GA

serves as a benchmark with which we compare the perfor-

mance of the proposed DTAA. However, we emphasize that

the GA is a centralized solution that is prohibitively expensive

to be implemented in practice. All simulation results are shown

for the following parameter choices: ρ = 1, λk = 10 ∀k ∈ N,

τk = 103 ∀k ∈ N, and αn = 1/n. In Fig. 2, we compare

the performance of the DTAA to a centralized algorithm

that solves the NUM problem based on an exact version of

the alternating direction method of multipliers (ADMM) as

well as the GA. The exact ADMM algorithm is presented

in Appendix B-B. Fig. 2 shows that the data rate allocation

obtained by the proposed DTAA results in a utility function

value that is barely indistinguishable from the optimal one

obtained through solving the non-convex NUM problem with

the GA. Fig. 2 also shows that the performance of the DTAA

summarized in Algorithm 1 closely follows that of the exact

ADMM. Although the proposed algorithm is implemented in

a distributed manner that requires no global network informa-

tion, it attains almost the same network utility obtained by a

centralized traffic allocation algorithm. Thus, Fig. 2 validates

the soundness of the proposed convex relaxation of the NUM

problem, and shows the convergence of the proposed DTAA

to the optimal traffic allocation.

For the clarity of exposition, we choose to show the results

for the data rate allocation on the routes available to the data

of sources S5 and S8 in Fig. 3 and 4, respectively, since the

set of available routes to each of them has a cardinality equal

to 2, i.e., |P5| = |P8| = 2. The DTAA is shown to converge

to the optimal data rate allocation obtained by the centralized

exact ADMM.

C. Algorithm Robustness

Finally, we show that the proposed DTAA is robust to link

failures and it automatically scales out to accommodate new

users joining the network. This feature is attributed to the

adaptive nature of updating the data rates. When a link failure

is detected, the algorithm reroutes the traffic such that it avoids

the routes using that link. The DTAA handles a link failure by
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Fig. 3. Source S5 data rate allocation.
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Fig. 4. Source S8 data rate allocation.

treating it as congestion, i.e., the source nodes are oblivious

to the failure and require no additional information other than

the usual binary feedback. The robustness of the algorithm is

demonstrated by Fig. 5, where the link connecting the nodes

b4-e4 fails after 20 iterations of running the algorithm and

recovers after 50 iterations. This particular link is chosen to

fail since its failure implies that sources S1, S3, and S8 are

disconnected from their destinations. Thus, its failure results

in a considerable degradation to the network utility, and its

recovery enables us to check if the algorithm is capable of

accommodating new users joining the network. The figure

shows that the algorithm quickly reacts to both the failure

and recovery of the link, where the utility function is shown

to converge to its new optimal value. It is worth mentioning

that the optimal value lines shown in this figure are obtained

by a centralized solution to (9) with the assumption of the

availability of global network information and the knowledge

of which link failed and when it fails and recovers.

VI. CONCLUSION

This paper addresses the optimization of network utility

functions that can be expressed as a sum of local user

utilities. The utility of each user is a non-concave function

of its aggregate data rate. In many practical applications, a

non-concave utility function is a better model of the user-

perceived quality. A convex relaxation of the non-convex

NUM problem has been proposed. Furthermore, an optimal

decentralized traffic allocation algorithm has been developed.

All computations are performed in parallel locally at each user.
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Fig. 5. Utility function value in response to link failure and recovery.

The information exchange in the network is minimal, where a

binary link congestion notification bit is fed back to the source

nodes. Numerical simulations demonstrated the robustness of

the algorithm to sudden link failures. Moreover, the algorithm

is shown to scale out automatically to accommodate new users

joining the network.

Future directions include performing numerical simulation

of the DTAA on large scale networks to further assess the

scalability of the algorithm. Moreover, we envision developing

a decentralized rate allocation algorithm that allows each node

to adapt its rate among any given set of next hops solely based

on immediate information from neighboring nodes.

APPENDIX A

PROOF OF PROPOSITION 1

The NUM problem (8) with polynomial-like utility func-

tions is stated as

maximize
(xi,ri), i∈S

∑

i∈S

ℓ
∑

j=0

pi,jr
j/ℓ
i

subject to
∑

i∈S

Aixi � c,

(xi, ri) ∈ Xi, i ∈ S,

(15)

We note that the objective function of (15) is in polynomial

form if one does a change of variables yi = r
1/ℓ
i ; consequently,

an equivalent formulation of (15) is

maximize
(xi,ri,yi), i∈S

∑

i∈S

ℓ
∑

j=0

pi,jy
j
i

subject to 0 ≤ yi ≤ r
1/ℓ
i , i ∈ S

∑

i∈S

Aixi � c,

(xi, ri) ∈ Xi, i ∈ S.

(16)

This equivalent formulation is still a non-convex problem due

to the non-concavity of the objective function. Nevertheless,

the convexity of the feasible set is preserved. Indeed, r
1/ℓ
i is a

concave function for ℓ ∈ Z+; hence, the constraints yi ≤ r
1/ℓ
i

are convex constraints. Inspired by the results of Theorems 1

and 2, we transform (16) into an optimization problem over the

space of probability measures of yi whose support is contained
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in the feasible set of (16). More precisely, we denote by mi,j

the moment of order j of yi for some probability measure

µi, i.e., mi,j =
∫

yji dµi. Theorem 1 implies that the objective

function becomes

∫

∑

i∈S

ℓ
∑

j=0

pi,jy
j
i dµi =

∑

i∈S

pT
i mi. (17)

Then, the result of Theorem 2 is used to construct the first

3 constraints of (9). It now remains to handle the constraint

yi ≤ r
1/ℓ
i , i.e., represent it in terms of the moments of yi. This

constraint is approximated by the set of constraints

mi,j ≤ r
j/ℓ
i , j ∈ {1, . . . , ℓ}. (18)

It is worth mentioning that r
j/ℓ
i is a concave function for all

j ∈ {1, . . . , ℓ}; hence, (18) is a set of convex constraints. As ℓ
increases, this constraint approximation is enhanced and thus,

the solution of (9) approaches that of (8).

APPENDIX B

DERIVATION OF THE TRAFFIC ALLOCATION ALGORITHM

This section presents the detailed mathematical derivation of

the DTAA developed in this paper. In other words, we derive

a decentralized algorithm that solves (13). Furthermore, we

provide a concise convergence proof of the algorithm for the

sake of completeness.

A. The Method of Multipliers

Under some mild assumptions, such as the existence of

a strictly feasible point for the convex program (13), strong

duality holds. Thus, instead of solving (13), the method of

multipliers suggests solving the dual problem using a gradient-

based algorithm. Towards this objective, we proceed with the

derivation of the dual problem corresponding to (13).

The Lagrangian function of (13), augmented with a

quadratic penalty on violating the constraint z = x, is given

by

L(m,x, z, ν)=
∑

i∈S

[

pT
i mi − νTi (xi − zi)−(ρ/2)‖xi − zi‖

2
]

,

(19)

where m = [mi]i∈S , ν = [νi]i∈S is the vector of dual

variables associated with the constraint z = x, and ρ > 0 is

the penalty parameter. The dual function is then obtained via

maximizing the Lagrangian function over all feasible primal

variables (m,x, r, z), i.e.,

g(ν)= max.
(m,x,r,z)

{

L(m,x, z, ν) : (mi,xi, ri)∈Ki, i∈S, z∈C
}

.

(20)

Next, we minimize the dual function, i.e.,

minimize
ν

g(ν). (21)

The dual problem (21) is solved using a gradient descent

method with a constant step size ρ. In particular, the gradient

descent algorithm produces a sequence {νk}k∈N as follows:

νk+1 = νk − ρ∇g(νk), (22)

such that g(νk) → p∗ as k → ∞, and p∗ is the optimal

value of (13). For any given ν, let (m(ν),x(ν), r(ν), z(ν))
denote the maximizer of (20). According to this construction,

the gradient of the dual function is given by

∇g(ν) = −(x(ν)− z(ν)). (23)

The method of multipliers can then be summarized as follows:

(m,x, r, z)k+1 = argmax
(m,x,r,z)

{

L(m,x, z, νk) : z ∈ C,

(mi,xi, ri) ∈ Ki, i ∈ S

}

(24)

νk+1 = νk + ρ(xk+1 − zk+1). (25)

Although the convergence to the optimal traffic allocation is

guaranteed through the method of multipliers, it does not count

as an algorithm that can be implemented in a decentralized

fashion. In fact, solving the optimization problem involved in

the primal variables update rule (24) requires global informa-

tion about the network due to the presence of the network

capacity constraint z ∈ C. Furthermore, we note that the

Lagrangian function is maximized jointly over the primal

variables; a fact that exacerbates the difficulty of coming up

with a distributed implementation of (24).

B. The Alternating Direction Method of Multipliers

Unlike the method of multipliers, ADMM updates the pri-

mal variables sequentially rather than jointly; hence, ADMM

allows for decomposition when the objective function is sepa-

rable. In particular, we consider two ADMM blocks, namely,

(m,x, r) and z. Then, the ADMM algorithm [16] updates the

primal and dual variables according to the following rules:

(m,x, r)k+1=argmax
(m,x,r)

{

L(m,x,zk,νk) : (mi,xi,ri)∈Ki, i∈S
}

(26)

zk+1 = argmax
z

{

L(mk+1,xk+1, z, νk) : z ∈ C
}

(27)

νk+1 = νk + ρ(xk+1 − zk+1). (28)

Separating the primal variables into the aforementioned two

blocks and updating them sequentially brings us one step

closer towards a decentralized implementation-friendly algo-

rithm that solves (13). To show that, we exploit the separable

structure of the Lagrangian function (19) to decompose the

optimization problem involved in the update rule (26) into

N independent optimization problems that can be solved in

parallel locally at each source node. In particular, simple

algebraic manipulation on (19) and its substitution into (26)

and (27) render ADMM consisting of the following iterations:

(mi,xi, ri)
k+1= argmax

(mi,xi,ri)∈Ki

{

pT
i mi − (ρ/2)

∥

∥xi−zki +uk
i

∥

∥

2}

(29)

zk+1 = ΠC

{

xk+1 + uk
}

(30)

uk+1
i = uk

i + xk+1
i − zk+1

i (31)
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where the variable update rules in (29) and (31) are performed

in parallel for every i ∈ S, u is a scaled version of the dual

variables ν such that ui = (1/ρ)νi, u = [ui]i∈S , and ΠC{.}
denotes the Euclidean projection operator over the set C.

In pursuit of solving the NUM problem (13) in a distributed

manner, we examine the update rules (29)-(31) to check the

possibility of their decentralized implementation. By examin-

ing (29)-(31), we note the following:

• The variables mi, xi, ri, zi, and ui are considered local

variables to the ith source.

• The update rules (29) and (31) can be performed in

parallel independently at each source node using local

information only. Moreover, it is assumed that each

source node has the computational capabilities that enable

it to solve a simple convex semidefinite program as the

one in (29).

• The z-update step (30) requires knowing the values of the

transmission rates xi and the dual variables ui for each

source node i ∈ S . Furthermore, it requires global infor-

mation of the network represented by the requirement of

knowing the structure of the set C, specifically, it requires

the knowledge of the matrices Ai for each i ∈ S and the

capacity of every link l ∈ L, i.e., c.

Although ADMM allows the decomposition of (26) into

independent optimization problems (29) solved locally at each

source node, its implementation requires the presence of a

central entity to perform the z-update step (30). A two-way

communication occurs between each source node and this

central entity. In the first phase, each source i ∈ S sends the

values of xi and ui. After the reception of the information

sent by all sources, the central entity performs the projection

operation (30) and sends back the updated values of zi to all

sources i ∈ S. Thus, it is obvious that a direct implementation

of ADMM exemplifies a centralized solution to the NUM

problem with considerable communication overhead. Next, we

propose an inexact ADMM algorithm that can be implemented

in a decentralized fashion, i.e., it resolves the problem of

requiring a centralized solution for (30).

C. The Inexact Alternating Direction Method of Multipliers

The ADMM algorithm updates the primal variables through

solving an optimization problem per ADMM block. Indeed,

(m,x, r) and z are updated by solving the maximization

problems (26) and (27), respectively. Eckstein shows in [17]

that it is possible to obtain a variant of the ADMM algorithm

in which at least one of the optimization problems involved in

the update rules of ADMM blocks merits an iterative solution.

In other words, under some conditions, an approximate inexact

solution of any of the optimization problems in the update

rules of ADMM suffices to retain the overall convergence of

the algorithm. Inspired by this insight, we propose an iterative

solution to (30) that opens room for a distributed implementa-

tion of the optimal traffic allocation algorithm. More precisely,

the proposed iterative solution to (30) requires neither global

information of the network nor high communication overhead

among source nodes.

The projection operation in (30) entails solving the follow-

ing quadratic program

minimize
zi, i∈S

1

2

∑

i∈S

∥

∥zi −
(

xk+1
i + uk

i

)∥

∥

2

subject to
∑

i∈S

aTl,izi − cl ≤ 0, l ∈ L

zi � 0, i ∈ S,

(32)

where aTl,i denotes the lth row of the matrix Ai. We propose

an alternative formulation of (32) that imposes a penalty on

violating the capacity constraint of any link l ∈ L. More

precisely, for each iteration k, instead of updating z through

solving (32), we solve

minimize
z

fk(z)

subject to z � 0,
(33)

where the minimand of (33) is defined as

fk(z)=
1

2

∑

i∈S

∥

∥zi−xk+1
i −uk

i

∥

∥

2
+λk

∑

l∈L

(

∑

i∈S

aTl,izi−cl

)+

(34)

and (.)+ = max(., 0). Problems (32) and (33) are equivalent

for a high enough value of λk ∈ R++. Theoretically, it is

not easy to choose λk that guarantees the equivalence of (32)

and (33). Thus, we envision investigating this technical issue

in a future work. For every ADMM iteration k, an inner

iterative subgradient descent algorithm is employed to solve

(33) through generating a sequence {zk,n}n∈Z+
such that

z
k,n+1
i =

(

z
k,n
i − αng

k,n
i

)+

, i ∈ S, (35)

with an appropriately chosen diminishing step size sequence

{αn}n∈Z+
, and gk,n = [gk,n

i ]i∈S ∈ ∂fk(zk,n). It follows

from (34) that the pth entry of g
k,n
i can be chosen as follows:

gp,k,ni ∈
{

zp,k,ni −xp,k+1
i −up,k

i

}

+
∑

l∈L

βk,n
l , p = 1, . . . , |Pi|,

(36)

with the set βk,n
l defined as

βk,n
l =











{0}, if
∑

i∈S aTl,iz
k,n
i < cl

[0, λkapl,i], if
∑

i∈S aTl,iz
k,n
i = cl

{λkapl,i}, if
∑

i∈S aTl,iz
k,n
i > cl,

(37)

where zp,k,ni , xp,k+1
i , and up,k

i denote the pth entry of z
k,n
i ,

xk+1
i , and uk

i , respectively. For instance, an obvious construc-

tion of g
k,n
i is given by

g
k,n
i = z

k,n
i − xk+1

i − uk
i + λk

∑

l∈L

bk,nl al,i, (38)

where bk,nl ∈ {0, 1} is a binary bit that equals 1 if zk,n causes

link l to be congested, and is 0 otherwise.

Lemma 1. The sequence {zk,n} generated by (35) converges

to the optimal solution of (33) zk,∗, i.e., zk,n→zk,∗ as n→∞.
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Algorithm 2: Approximate ADMM

(ρ,{αn}n∈Z+
,{ǫk}k∈Z+

,{λk}k∈N,z0 = [z0i ]i∈S ,u0 = [u0
i ]i∈S )

1 Initialize z
0, u0

2 repeat{for k = 0, 1, . . .}

3 (mi,xi, ri)
k+1←argmax

{

p
T
i mi−

ρ

2

∥

∥xi−z
k
i +u

k
i

∥

∥

2
:

(mi,xi, ri) ∈ Ki

}

, i ∈ S.
4 Initialize z

k,1 ← z
k

5 repeat{for n = 1, 2, . . .}

6 Each source i ∈ S communicates z
k,n
i to Pi.

7 Each link l ∈ L sends b
k,n

l to Sl.

8 g
k,n
i ← z

k,n
i − x

k+1

i − u
k
i + λk

∑

l∈L

b
k,n

l al,i, i ∈ S.

9 z
k,n+1

i ←
(

z
k,n
i − αn

g
k,n
i

)+

, i ∈ S .

10 until ‖gk,n‖ ≤ ǫk+1

11 z
k+1 ← z

k,n

12 u
k+1

i ← u
k
i + x

k+1

i − z
k+1

i , i ∈ S.
13 until Overall convergence

Proof. This result follows from the convergence of subgradi-

ent methods; see for instance [18].

Let {ǫk}k∈Z+
⊂ R++ be a summable sequence of positive

scalars, i.e.,
∑

k≥1 ǫ
k < ∞. Then, Algorithm 2 provides an

optimal decentralized traffic allocation algorithm.

Proposition 2. The sequence
{

(mi,xi, ri, zi, ρui)
k
}

gener-

ated by Algorithm 2 converges to a KKT point of (13).

Proof. The proof of this form of approximate version of

ADMM is presented in [17]. Indeed, Algorithm 2 satisfy the

conditions required for [17, Proposition 7] to hold. We briefly

mention the main idea of the proof for the convenience of the

reader. For each iteration k, fk(z) defined in (34) is a strongly

convex function of z with modulus 1. Thus, the subdifferential

map ∂fk is strongly monotone with modulus γ = 1. We have

0 ∈ ∂fk(zk,∗) since zk,∗ is the optimal solution of (33), and

gk,n ∈ ∂fk(zk,n) by construction. Then, the Cauchy-Schwarz

inequality and the strong monotonicity of ∂fk imply that

‖gk,n‖‖zk,n − zk,∗‖ ≥ (zk,n − zk,∗)Tgk,n ≥ ‖zk,n − zk,∗‖2.
(39)

Therefore, the termination criterion of the inner loop of

Algorithm 2 implies that the distance between the approximate

solution of (33) zk+1 and the exact minimizer zk,∗ is upper

bounded by a summable sequence, i.e.,

‖zk+1 − zk,∗‖ ≤ ǫk+1, (40)

and hence, Proposition 2 follows from [19, Theorem 8].

The proposed inexact ADMM algorithm overcomes the two

main obstacles encountered by the exact ADMM algorithm;

specifically, the need for a centralized solution to (30) and the

high communication overhead. A distributed implementation

of the traffic allocation algorithm is now possible since the

variables zi are updated in parallel locally at each source

i ∈ S . In a real-world implementation, Algorithm 2 runs

continuously without being terminated. Therefore, Algorithm

1 represents the continuously running version of Algorithm

2. In Algorithm 1, the termination criterion of the inner loop

of Algorithm 2 is replaced with executing the inner loop of

Algorithm 1 for an increasing number of steps as k increases

and hence, ensuring that the approximate solution obtained for

(33) is enhanced as k increases.

REFERENCES

[1] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, vol. 49, no. 3, pp. 237–
252, 1998.

[2] A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle,
“Optimal distributed gradient methods for net-
work resource allocation problems.” [Online]. Avail-
able: http://asu.mit.edu/sites/default/files/documents/publications/NUM-
FGM.pdf

[3] X. Q. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic ap-
proach for dynamic adaptive video streaming over http,” in SIGCOMM,
2015, pp. 325–338.

[4] M. Fazel and M. Chiang, “Network utility maximization with noncon-
cave utilities using sum-of-squares method,” in Proceedings of the 44th

IEEE Conference on Decision and Control, 2005, pp. 1867–1874.
[5] J. Chen, M. Chiang, J. Erman, G. Li, K. Ramakrishnan, and R. K.

Sinha, “Fair and optimal resource allocation for LTE multicast (eM-
BMS): Group partitioning and dynamics,” in 2015 IEEE Conference on

Computer Communications (INFOCOM), pp. 1266–1274.
[6] H. Zhou, Y. Ji, X. Wang, and B. Zhao, “ADMM based algorithm for

eICIC configuration in heterogeneous cellular networks,” in 2015 IEEE

Conference on Computer Communications (INFOCOM), pp. 343–351.
[7] J. Liu, A. Eryilmaz, N. B. Shroff, and E. S. Bentley, “Heavy-ball:

A new approach to tame delay and convergence in wireless network
optimization,” in 2016 IEEE Conference on Computer Communications

(INFOCOM), pp. 1–9.
[8] F. Kelly, G. Raina, and T. Voice, “Stability and fairness of explicit

congestion control with small buffers,” ACM SIGCOMM Computer

Communication Review, vol. 38, no. 3, pp. 51–62, 2008.
[9] G. Tychogiorgos, A. Gkelias, and K. K. Leung, “A non-convex dis-

tributed optimization framework and its application to wireless ad-hoc
networks,” IEEE Transactions on Wireless Communications, vol. 12,
no. 9, pp. 4286–4296, 2013.

[10] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convex optimization
and rate control for multi-class services in the internet,” IEEE/ACM

transactions on networking, vol. 13, no. 4, pp. 827–840, 2005.
[11] P. Hande, S. Zhang, and M. Chiang, “Distributed rate allocation for

inelastic flows,” IEEE/ACM Transactions on Networking, vol. 15, no. 6,
pp. 1240–1253, 2007.

[12] J. B. Lasserre, “Global optimization with polynomials and the problem
of moments,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–
817, 2001.

[13] N. Ozay, C. Lagoa, and M. Sznaier, “Set membership identification of
switched linear systems with known number of subsystems,” Automat-

ica, vol. 51, pp. 180–191, 2015.
[14] M. Krein and A. Nudelman, “The markov moment problem and extremal

problems, volume 50 of translations of mathematical monographs,”
American Mathematical Society, Providence, Rhode Island, 1977.

[15] C. M. Lagoa, H. Che, B. A, and Movsichoff, “Adaptive control algorithm
for dencentralized optimal traffic engineering in the internet,” IEEE/ACM

Transactions on Networking, vol. 12, no. 3, pp. 415–428, June 2004.
[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[17] J. Eckstein and W. Yao, “Approximate versions of the alternating
direction method of multipliers,” Tech. Rep., 2016.

[18] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture notes

of EE392, Stanford University, 2003.
[19] J. Eckstein and D. P. Bertsekas, “On the Douglas Rachford splitting

method and the proximal point algorithm for maximal monotone opera-
tors,” Mathematical Programming, vol. 55, no. 1-3, pp. 293–318, 1992.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications


